A

AD-A246 063

NAVAL POSTGRADUATE SCHOOL
Monterey , California

etk
SFEBZMSJSZ THESIS

SOLUTION STRATEGIES FOR SECOND ORDER,
NONLINEAR, ONE DIMENSIONAL, TWO POINT
BOUNDARY VALUE PROBLEMS
BY FEM ANALYSIS

by
Baird S. Ritter

December 1990

Thesis Advisor D. Salinas

Approved for public release; distribution is unlimited.

g2 2 14 027 92-03934
IERNE

assified

ty classification of this page

REPORT DOCUMENTATION PAGE

eport Security Classification Unclassified 1b Restrictive Markings
reurity Classification Authority 3 Distribution Availability of Report
eclassification Downgrading Schedule Approved for public release; distribution is unlimited.
rforming Organization Report Number(s) 5 Monitoring Organization Report Number(s)
ame of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
ral Postgraduate School (if applicable) 34 Naval Postgraduate School
ddress (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
nterey, CA 93943-5000 Monterey, CA 93943-5000
ame of Funding Sponsoring Organization | 8b Office Symbol 9 Procurement Instrument Identification Number

(if applicable)
ddress (city, state, and ZIP code) 10 Source of Funding Numbers

Program Element No I Project .’\'ﬂ Task No] Work Unit Accession No

itle (Include securlty classification) SOLUTION STRATEGIES FOR SECOND ORDER, NONLINEAR, ONE DIMEN-
INAL, TWO POINT BOUNDARY VALUE PROBLEMS BY FEM ANALYSIS

ersonal Author(s) Baird S. Ritter

Type of Report 13b Time Covered 14 Date of Report (year, month, day) 15 Page Count
ster’s Thesis From To December 1990 178

upplementary Notation The views expressed in this thesis are those of the author and do not reflect the official policy or po-
»n of the Department of Defense or the U.S. Government.

‘osat1 Codes 18 Subject Terms (continue on reverse If necessary and identify by block number)

1 Group Subgroup | Galerkin FEM, nonlinear, quasilinearization, linearization, interpolation, iteration, differ-
ential equation, convergence

\bstract (continue on reverse if necessary and identify by block number)

This research demonstrates the Galerkin FEM's ability to provide approximate solutions of second order, nonlinear, one
iensional, two point boundary value problems. The research concentrates on the development of linearization, iteration,
. interpolation strategies for the solution of differential equations containing the nonlinear ¥? term. Additionally, various
nerical considerations are explored. Over 2000 cases were analyzed using various strategies and results detailing the efficacy
itrategy combinations are presented. A linearization strategy known as quasilinearization consistently yielded excellent
roximate solutions of the nonlinear differential equations investigated. It converged in a minimum number of iterations
. was capable of solving equations which have large function order and activity over their specified domain.

nstribution Availability of Abstract 21 Abstract Security Classification

inclassified unlimited {J same as report O DTIC users Unclassified

Name of Responsible Individual 22b Telephone (include Area code) 22¢ Office Symbol

Salinas (408) 646-3426 ME/Sa

FORM 1473,84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete

Unclassified

Approved for public release; distribution is unlimited.

Solution Strategies for Second Order,
Nonlinear, One Dimensional, Two Point Boundary Value Problems
by FEM Analysis
by
Baird S. Ritter
Lieutenant, United States Coast Guard

B.S., United States Coast Guard Academy, 1980

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
December 1990

Author: @ CU;_Q, /Q ﬂm

Baird S. Ritter

Approved by: & !d 2 2) -

D. Salinas, Thesis Advisor

Anthony J. Healy, Chairman, f
Department of Mechanical Engineeridg

ABSTRACT

This research demonstrates the Galerkin FEM’s ability to provide approximate sol-

utions of second order, nonlinear, one dimensional, two point boundary value problems.

The research concentrates on the development of linearization, iteration, and interpo-
lation strategies for the solution of differential equations containing the nonlinear u?
term. Additionally, various numerical considerations are explored. Over 2000 cases

were analyzed using various strategies and results detailing the efficacy of strategy com-

binations are presented. A linearization strategy known as quasilinearization consist-
ently yielded excellent approximate solutions of the nonlinear differential equations
investigated. It converged in a minimum number of iterations and was capable of solv-
ing equations which have large function order and activity over their specified domain.

e
s

™

e

Accesion For \
NT!S CRA&I g
DTIC TAB i}
Usaniouicad O

Justification

BY e o]
Di.t ibution |

Availabitity Codes

- P Aval asdjor
Dist Spacial

Al

L.

TABLE OF CONTENTS

I INTRODUCTION ... i e e e e et
A. LINEAR DIFFERENTIAL EQUATIONSo,
B. NONLINEAR DIFFERENTIAL EQUATIONS

I1. LINEAR APPLICATIONS OF THE GALERKIN FINITE ELEMENT

METHOD (FEM) ... e i e
A. GENERALFEMPROCEDURE,
B. RESULTS ... e e e 11
C. CONCLUSIONS ... i i e i e ittt i e naas 16

ITIl. ONE DIMENSIONAL SECOND ORDER NONLINEAR SYSTEMS 18

A. LINEARIZATION STRATEGIES i, 19
1. Constant Linearizationccuutirvererrreeenenennn 19

2. Classical Linearizationcceiutrnernnnenneeeneennn 19

3. Quasili_néafization .. 20

B. INTERPOLATION STRATEGIESo.vvvnnenrinnnnnnnn.s. 20
1. Linearization VeCtOrcoitiiinenntennnnnneennennn 21

a. Midpoint Lumped Approximationcouiieene.nn 21

b. 1/4- 3/4‘Lumped ApProxXimationc.ceieierananaas 22

C. Linear Approximationctvivirerinnnnernnnnnn. 23

2. Linearization™™MatriXc.c0iiiiiiiiiii e 23

a. Midpoint Lumped Approximation0 24

b. Linear ApproXimationovierinnrrrninieernann 24

C. ITERATIONSTRATEGIEScc0tiitiiiiiiiiiiiennnn. 24
I. Inmtiallterationottt i, 25

2. Subsequent Iterationscccvtviiernnrninennnnnnnnns 27

a. Previous Value Strategyty 27

b. Average Value Strategyottt 28

c. Additional Strategies i i i e 28

D. NUMERICAL CONSIDERATIONSo, 28
1. Convergence/Divergencec ittt 29

iv

2. Critical Number of Degrees of Freedom (DOF) 29

3. Stability .. e e e e 29

4. Multiplicity of Solutionst 30

S. Boundary Condition Effects 30

6. Computational Efficiency o i i, 30

IV, APPLICATIONS . ittt e e e e e 32
A. PRELIMINARIES i e et i 32
1. Equations, Domains, and Boundary Conditions 32

2. Related Engineering Phenomena, 33

a. BarProblem e e e 33

b. Heat FinProblem it iiiiiiiinnnn 34

3. Function Order and Domain Nondimensionalization 36

4. General Solution Procedure i i, 36

5. Initial Iteration Strategyttt 37

B. CONSTANT LINEARIZATION ittt 44
1. Problem Formulationc0iiitiirirereneneenen. 44

2. Results e 46

2 General e e 46

b. Boundary Conditionsccuiiiiininirnnennnnn. 48

c. Initial Iteration Strategyot 48

d. Subsequent Iteration Strategyccciiiiiiiien. 48

e. Interpolation Strategyc.iitiiiit e, 53

f. Overall Performance ittt inennnnnn. 53

3. ConClUSIONS ..o vt ittt e it e e 53

C. CLASSICAL LINEARIZATION i 54
I. Problem Formulation s, 54

2. Results ... i e e e e e 55

a. General e e 55

b. Boundary Conditionscciuriiiuinerineerienan, 60

c. Initial Iteration Strategy i it 61

d. Subsequent Iteration Strategy 61

e. Interpolation Strategy i, 61

f. Overall Performance it 62

3. Conclusions e e e e e 62

D. QUASILINEARIZATION ... ittt 62
1. Problem Formulation 62

2. ReSUILS ... i i e e e e e e 63

a. General s e e e 63

b. BoundarvConditionscciiiiiiiiiiiiiii 76

c. [Initial Iteration Strategyo, 76

d. Subsequent Iteration Strategy, 78

e. Interpolation Strategy i, 78

f. Overall Performancec.oviiiiiiiriininnrennnnns 79

3. ConClUSIONS ... ii i it i e it e e 79

E. FINALREMARKS it i i i 79

APPENDIX A. FORCING FUNCTION FORMULATION STRATEGIES ... 81

APPENDIX B. PROGRAM LISTINGS AND RESULTS FOR THE LINEAR
APPLICATION OF THE GALERKINFEM i, 83

APPENDIX C. LINEARIZATION VECTORS FOR CONSTANT
LINEARIZATION TECHNIQUEt 103

APPENDIX D. LINEARIZATION MATRICES FOR THE CLASSICAL
LINEARIZATIONTECHNIQUE, 105

APPENDIX E. PROGRAM LISTINGS FOR CONSTANT LINEARIZATION 106
APPENDIX F. PROGRAM LISTINGS FOR CLASSICAL LINEARIZATION 125

APPENDIX G. PROGRAM LISTINGS FOR QUASILINEARIZATION 14

LISTOF REFERENCES ittt ittt iiiiennnenn 164
INITIAL DISTRIBUTION LIST it i e 165

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table
Table

Table

Table

Table

N H W N e

10.
11

12.

13.

14.

e

LIST OF TABLES

. FORCING FUNCTIONS FOR VARIOUS F(X) «...vvvvennnnnn.. 12
. FUNCTION ORDER OF EQUATIONS (4.1) AND (4.2) 36
. CONSTANT LINEARIZATION ELEMENT VECTORS as

. ELEMENT FORCE VECTORS FOR EQUATIONS (4.1) AND (4.2) . 46
. NUMBER OF ELEMENTS UPCN WHICH SOLUTION

PROCEDURE RESULTS ARE BASED e 47

. SOLUTION PROCEDURES AND RESULTS USING CONSTANT

LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
ONE o e e 49

. SOLUTION PROCEDURES AND RESULTS USING CONSTANT

LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAINS
TWOAND THREE et 50

. SOLUTION PROCEDURES AND RESULTS USING CONSTANT

LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
ONE i i i e i e i e e 51

. SOLUTION PROCEDURES AND RESULTS USING CONSTANT

LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAINS
TWO AND THREE .« vt et e e et B 52
CLASSICAL LINEARIZATION ELEMENT MATRICES 55
SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN

ONE ettt et e e e e e 56
SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAINS
TWO AND THREE .« vt ettt e e et 57
SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN

ONE o vttt e e e e e e 58
SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAINS
TWO AND THREE .\t e et e e e e e, 59

vii

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

15.

16.

17.

I8.

20.

21.

22.

23.

24.

25.

SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
ONE ottt et e e
SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
LN A (o0 1 ¥ Y
SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
TWO ittt
SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
THREE .« .ttt ettt ettt et

. SOLUTION PROCEDURES AND RESULTS USING QUASI-

LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
THREE (CONT.) « vttt e e e e e
SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
ONE ettt e e
SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
ONE (CONT.) oottt et et e e
SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
TWO ottt e PRI
SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
TWO (CONT.) ot vttt ettt e e e e e e e
SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
THREE .ottt te e e e e e e e e e
SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
THREE (CONT.) '+ v oottt ettt et e et

viii

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

W e bW =

et et pmsk pmt et bt et s
NN bW = O

LIST OF FIGURES

One Dimensional Linear Shape Functions 7
Illustration of Midpoint Lumped Approximation 9
[llustration of 1/4 - 3/4 Lumped Approximation 10
Illustration of Linear Approximation0vuu... 10
Global to Local Coordinate Transformation 11
Comparison of Solutions for Equation 2.8 Using 10 Elements. 13
Comparison of Solutions for Equation 2.9 Using 10 Elements. 14
Comparison of Solutions for Equation 2.10 Using 10 Elements. 15
Solution of Equation 2.10 Over a Large Domain Using Two Elements . 17
Axially Loaded Bar Embedded in a Nonlinearly Elastic Material 34
. Heat Fin With Nonlinear Convectiono 35
. Solution Procedure for Nonlinear Differential Equations 38
. Dominance of Terms in Equation (4.1) over Domain Two 40
. Dominance of Terms in Equation (4.1) over Domain Three 41
. Dominance of Terms in Equation (4.2) over Domain Two 4?2
Dominance of Terms in Equation (4.2) over Domain Three 43
. Dominance of Terms in Equation (4.2) Over DomainOne 77

ix

LIST OF SYMBOLS

a - FEM 2x2 Elemental Differentia! Operator Matrix
A - FEM NxN System Differential Operator Matrix
B - FEM Nx1 Natural Boundary Condition Vector
CPU - Actual Time Required for Iteration Process
CPU " - Measure of accuracy and computational effort
D - Length of Domain

/[- Internal System Excitation

f - FEM 2x1 Element Excitation Vector

F - FEM Nx1 System Excitation Vector

g - Element 2x1 Linear Shape Function Vector

G - Global Nx1 Linear Shape Function Vector

h- Arbitrary function utilized in the linearized Galerkin integral
1 - FEM 2x2 Element Linearization Matrix

L - FEM NxN System Line: mization Matrix

m - Arbitrary function utilized in classical linearization
N - Number of system degrees of freedon

q - Arbitrary function utilized in quasilinearization

R - Residual

u - Dependent Variable

u - FEM Solution Nx1 Vector

v - Arbitrary function utilized in constant linearization
w - Weighting factor

x - Independent Variable

a, - Distance from origin of x to origin of element i

n - Nondimensionalized coordinate system

¢ - Element coordinate system

- Linear Differential Operator

£() - Nonlinear Differential Operator

Subscripts

i - Iteration number

j - Global nodal point number
m - Modified

Superscripts

* - Variable which changes during the iteration process

~ - Derived from FEM approximation; approximate value
T - Vector transpose

I. INTRODUCTION

Differential equations which describe natural phenomena are developed through the
application of the conservation principles of mass, momentum, and/or energy to a con-
tinuous media. After application of these principles to a small or differential element
of the media, the resulting equation provides a relationship between one or more deriv-
atives of an unknown function whose behavior is desired. The differential equation is
linear when it contains only derivatives of the function with either constant or inde-
pendent variable function coefficients. The solutions of linear differential equations are
unique based on their boundary and/or initial conditions. Various analytical and nu-
merical strategies have been developed to obtain these solutions. The finite element
method (FEM), which is used in this research, is one of the more popular and accurate
techniques that has been developed to solve differential equations.

When the coefficients of the derivatives are functions of the desired unknown, (that
is, the dependent variable), or when the dependent variable and/or its derivatives do not
appear linearly in the differential equation, then the differential equation becomes non-
linear and conventional analytical techniques usually do not work. Nonlinear operators
occur in a number of differential equations that describe the behavior of natural phe-
nomenon, e.g., the Navier-Stokes equations for fluid flow, a beam on an inelastic foun-
dation, the Falkner Skan equation, etc. This research investigates various strategies for
solving nonlinear, second order, one dimensional, two point boundary value problems
using FEM analysis. The Galerkin method of weighted residuals (MWR) with discrete
basis functions is the FEM technique used to compute approximate solutions of these

equations.

A. LINEAR DIFFERENTIAL EQUATIONS
Under most circumstances, this particular FEM provides excellent approximations
to linear differential equations of the form

Fu—-f=0, O<x<D (1.1)

with appropriate essential and natural boundary conditions where

2
® & is the sum of arbitrary linear operators such as ix () <

d ’ dxz ()9etc'

e x is the one-dimensional independent variable

® u is the dependent variable of x
® fis an internal excitation to the system

¢ D is the domain of the differential equation

If the dominant operator in equation (1.1) is of odd order (non self-adjoint form), then
the Galerkin method doesn’t work and the Petrov-Galerkin FEM must be utilized. The
Galerkin FEM transforms the differential equation into a system of linear algebraic

equations of the form
Au—-F=0 (1.2.0)

where

® A is an NxN coefficient matrix characterizing the operator(s) &%, and N is the
number of system degrees of freedom (DOF) in the approximation.

¢ uis the Nx1 FEM approximate solution vector

® Fis an Nx1 FEM vector representation of the excitation function f

This system of equations is readily solved by matrix algebra for the response variable,
u=A"'F (1.2.5)

where equation (1.2.b) implies the solution of equation (1.2.a) and does not mean that
A inverse is actually obtained.

Chapter 11 of the research demonstrates the Galerkin Method’s ability to accurately
model linear differential equations, regardless of the magnitude of the solution, i.e.,
u=x?, x* etc. Additionally, various methods of modeling the excitation function, f, are
examined.

B. NONLINEAR DIFFERENTIAL EQUATIONS
The remaining research examines various nonlinear, second order, differential
equations of the form

Pu+ L(u)—f=0 0<x<D (1.3)

with appropriate boundary conditions where all terms are as previously defined and

£#(u) is the sum of arbitrary nonlinear terms such as u-a,i , sin(u), u? etc. Though this
dx

research concentrates on the «” nonlinear term, the principles presented should allow for

the adequate analysis of any nonlinear term that might be encountered.

The first step in the solution of equation (1.3) is linearization of the nonlinear term.
Once the equation is linearized with respect to the dependent variable, the Galerkin
FEM is used in an iterative fashion to solve a linear system of algebraic equations in the
form

Au+Lu—F=0 (1.4)

where the coefficients of L’ are functions of u evaluated at the previous iteration, de-
noted u,,, and where subscripts i and i-1 refer to the present and past iterations. To
begin the iteration process, a value is initially assumed for u,, and the system of
equations is solved for u, The new values of u, and the input values of u,, at each node
are compared and tested against a convergence criteria. If convergence is not obtained,
the new value of u, is substituted back into the system of equations for u,, and the iter-
ation process continues until convergence is obtained. The final iteration yields the
FEM approximate solution of the nonlinear differential equation.

Chapter 111 provides the general principles and considerations which are involved
in solving nonlinear differential equations. Chapter IV utilizes these principles in the
solution of two different equations containing the nonlinear term «>. Final conclusions
are made based on the solution results as to which problem solving strategy yields the
most accurate approximation while using the least amount of computer time.

II. LINEAR APPLICATIONS OF THE GALERKIN FINITE ELEMENT
METHOD (FEM) ‘

This section examines the Galerkin method of weighted residuals (MWR) using
discrete linear shape functions, that is the Galerkin FEM, as applied to linear second
order, one dimensional, differential equations, that is, two point boundary value prob-

lems. In section A, a general FEM procedure for the differential equation
' ~f(x)=0 a<x<b (2.1)

with two boundary conditions, one at each end point of the domain, is presented. In
particular, several strategies for the FEM representation of the excitation function f(x)
are developed.

In section B, the various strategies for FEM representation of the excitation func-
tion are implemented on equation (2.1) for three different excitation functions. The

three f'(x) functions were selected to provide the solutions of x?, x3, x* to equation (2.1).

A. GENERAL FEM PROCEDURE

Here, a general procedure for the FEM formulation of equation (2.1) is presented.
The Galerkin FEM process transforms a differential equation into a system of linear
algebraic whose solution is an approximation to the exact solution of the differential
equation. The transformation requires the following three steps:

¢ Step I: Form an N degree of freedom approximation, say u = G'u, where:
u is the approximate solution
G’ is the 1xXN transpose vector of linear shape functions
u is the Nx1 vector of the FEM solution, u, at each node

¢ Step 2: Form the Residual R = "’ — f(x), where:
S (x) is the excitation function in the differential equation

o Step 3 Form the Galerkin integral equations | :GRdx =0

The evaluation of these integral equations gives a system of N linear algebraic
equations whose solution is the approximation, «. The details of the FEM formulation
for equation (2.1) follows. Substitution of the residual R into the Galerkin integral

equation and separating terms yields

b b
I Gu''dx — I Gf(x)dx=0 (2.2.a)

From step 1, &'’ = (G'u)”’ = (G")""u. Substitution of this into the first term of equation
(2.2.a) and moving the second term to the right hand side yields

b b
J G(G")dxu= f G f(x)dx (2.2.b)

Note that the term on the left hand side is the FEM representation of Yu = «"' and the
term on the right hand side is the FEM representation of f(x). The result of an inte-
gration by parts of the left hand side leaves

T b [P T b
G(G'yu|, - J G'(G')Ydxu= J G f(x)dx (2.2.c)
a a
Each term is now evaluated individually.

Boundary Term , G(G")'ul*

Differentiating the equation in step 1 of the formulation process yields (G')'u = &'.

Substitution of ¥’ into the above equation and evaluating it at the upper and lower limits
gives

g | |G
Gy(B)i(b) 6,(@)i"(a)
Gi'l,- G|, =| .. - (2.3.0)

GNOF®) | | @@ |

In equation (2.3.a), G, denotes that it is the linear shape function associated with the
system degree of freedom (SDOF) at the & system nodal point. The’a’and’b’ ar-
guments of G and «’ are the endpoint values of the domain where these functions are
evaluated. These endpoin . could be denoted by their system node identities, which are
1 and N, at the left and right end points respectively. With this notation, equation
(2.3.a) becomes:

i | [ewrm]
GAN)Z(N) G (1)
Gi'|,~ G|, = - (2.3.5)
GFm| |Gz

Due to the Kroenecker delta propertyl of the linear shape functions, all terms are equal

to zero except Gy(N)u'(N) and G,(1)a’(1). This vields a single vector comprised of the

natural boundary conditions at each end of the domain and is designated B where

- (@)
0

Gi'|,— G#'|,=B (2.3.c)

0
u'(b)
d

When natural boundary conditions, «’, are present, they are used for the corresponding

' in equation (2.3.c).

Differential Operator , [*G'(G")dxu

The integral [G'(G")'dx , associated with the '’ operator, is reduced to the element
a

coordinate level for evaluation and becomes the 2x2 element a matrix

‘=I ‘el . (24.4)
0

where ¢ is the local coordinate axis, /, is the length of the element, and g is the 2x1

vector of linear shape functions, given by

o= 13

" (2.4.6)

‘= ¢ (2.4.0)

J-L R
a= LIT_L 1 dg—jl' C b at
- +-l- el - 0 -1 +—l— 2.4
0 Ie Iez [3 (4... .d)

Figure 1. One Dimensional Linear Shape Functions

After construction in an element DO loop, the 2x2 a matrix for each element is then

distributed into the NxN system A matrix in accordance with a correspondence table,

which relates local DOF to system DOF, and where N is the number of system degrees
of freedom. Each element has two local degrees of freedom, LDOF I at the left end of
an element, and LDOF 2 at the right end of the element. The correspondence between
LDOF 1 and LDOF 2 of the ™ element and the j** system degree of freedom (SDOF J)
isJ=(i—1)+ k wherekis I or 2. Upon assembly of all the element matrices, we obtain
the system Au term.

Excitation , [°G f(x)dx
This term determines the forcing function (or excitation) vector F , that is

b
F = j G f(x)dx (2.5)

and is obtained by assembling the 2x1 element excitation vectors f. The f vectors can

be either modeled as a lumped approximation term in several different ways or integrated
exactly to yield a consistent forcing function. In this study, two lumped approximations
and the exact integration are developed and thereafter compared to determine which
yields the more accurate solution. A third approximation method is also described.
Although this third method is not used in the evaluation of the excitation function in this
chapter on linear systems, it is used in the next chapter on the nonlinear systems portion
of the research. It should be noted that as the number of elements approaches infinity
and the element length approaches zero, each approximation technique described below
yields the exact value of the excitation integral.

¢ Midpoint Lumped Approximation of f(x)

The midpoint lumped approximation method for evaluation of the excitation
vector is the simplest and crudest approximation. This approximation involves
evaluating the function f(x) at the midpoint of the element and multiplying this
value by the element length. Half of this area (f(/,/2)/,) is then placed at the left
element node and the other half at the right element node as illustrated in
Figure 2 on page 9 for three different arbitrary f(x). For the monotonically in-
creasing function in Figure 2.a, this method places too much area at the left local
nodal point (LNP) and not enough at the right. Conversely, when f(x) is
monotonically decreasing, too little area is placed at the left node while the right
node gets too much. When f(x) is concave over the element, too little area is
placed at each node (Figure 2.b), while for the convex case (Figure 2.c), each LNP
receives too much area.

e 1/4 -3/4 Lumped Approximation of f(x)
This technique, which is a refinement of the previous one, evaluates f(x) at the
quarter point and three quarter point of an element. Each value is multiplied by
half of the element length and the resulting areas are placed at the left and right

S(x) & S(x) & S(x)&

element nodal points respectively as shown in [Figure 3 on page 10 for the same
three arbitrary functions. This method provides a better approximation than the
lumped midpoint technique, especially for the monotonically increasing function in
Figure 3.a, as it uses two points to capture the behavior of the curve instead of one.

3)

!
-~
—
Nl:~
R —
I

1 T 1 2 x
IQ—/,—D l‘—-l,-——b

(a) (b) (c)

Figure 2. Illustration of Midpoiut Lumped Approximation

* Linear Approximation

This method approximates f(x) over the element in terms of the linear shape
functions where

@) = f)=7 (xn)(l - 1%) +f (Xz)(,%) (2.6)

as shown in Figure 4 on page 10. It overestimates the area for concave curves
(Figure 4.a) and underestimates for convex curves as shown in Figure 4.b. Note
that f(x,) and f(x,) can be generalized to coefficients f; and f; to give a better linear
fit of the curve. Also, the linear shape functions can be replaced by higher order
shape functions which provides an #* order approximation of f(x) as opposed to
a linear one. This approximation method is not utilized for the evaluation of
forcing functions, but is used later in the nonlinear portion of the rescarch to ap-
proximate other types of functions.

Consistent

The consistent solution requires transforming f(x) into the element coordinate
system, f(£), by substituting x = a,+ £ into f(x) and performing the integration
over the lengths of the elements. The coordinate transformation is illustrated in
Figure 5 on page 11.

S(x) & S (x)? S(x) &

Figure 3. 1llustration of 1/4 - 3/4 Lumped Approximation

A 3
J(x3)
f(*“z) &
S(x) ¥
Jx)}-
4

(b)

Figure 4, lllustration of Linear Approximation

10

i™ element

— -— >

L o, ale ; _‘l x={i+ o

i—1 —*¢
J=1

H

Figure 5. Global to Local Coordinate Transformation

The integration for cach of the above methods is performed on the clement lcvel,
producing the 2x1 f vector. The f vector for each element is then distributed into the
NxI system force vector F in accordance with the local to global nodal point corre-
spondence.

Substitution of A, F, and B into equation (2.2.c) yiclds a lincar system of algcbraic

cquations in the form
—Au=F-B (2.7.a)
The (F — B) term can be combined into a single vector designated F,, leaving

~Au=F, (2.7.b)

which can be solved for u, the FEM approximate solution at each nodal point.

B. RESULTS ‘
In order to obtain specific results, the following equations are analyzed over the

domain 0 <x<2:

W=2 u0)=0, u'(2)=4 Upraes = X (2.8)
wW=06x; u0)=0, 'Q)=12 uu=x (2.9)
u' =12 w0)=0, (=32 ug=x" (2.10)

11

The excitation function in each of the above equations is evaluated using the three
methods previously described in 11.A. The detailed formulation of these different f vec-
tors 1s shown in Appendix A for the forcing function of equation (2.9) where f(x) = 6x.
The other two f(x) are evaluated in a similar manner and the results for all three f(x)

functions are shown in Table 1.

Table 1. FORCING FUNCTIONS FOR VARIOUS F(X)

[, [a 1"
2 [[.] [Il] [[']
Lk 4k
a+ = 0 el :
2 4 3al, +
6x 3, 1 34 31, [3(1/, + 21,2]
7 a+ 2 ;_a + 4
= X Ry [, >z
1252 6l (a 2) 6l (a T 6acl, + dal+ [
¢ la 2 N 31, 2 6&21. + 8a102+ 3103
a+ «+-7

The FORTRAN programs and results for a ten element analysis of each equation
with the various forcing functions are provided in Appendix B. The first problem con-
sidered is that presented by equation (2.8). Due to the nature of the forcing function in
this equation, i.e., a constant, all three formulation options provide the same result. The
FEM approximation, shown in Figure 6, provided the exact solution at each nodal
point for a 10 element analysis.

The solutions of equations (2.9) and (2.10) were then considered. The different
forcing function formulations in Table 1 were used in solving these differential
equations. For clarity purposes, only a portion of the plots comparing each solution
process to the exact solution in an area of rapidly changing gradient are shown in
Figure 7 on page 14 (for «”’ = 6x) and Figure 8 on page 15 (for u’’ = 12x?).

The midpoint approximation method for F provides a solution which is larger than
the exact at each nodal point for both equations (2.9) and (2.10). The approximation

is worse for equation (2.10) in Figure 8 as the midpoint method provides an overesti-

12

4.0

U =2 U(0)=0, U'{2)=4
7 LEGEND

o U EX&Q! (U=X**2)
LLUEEM

28
2

23
4

U
2.0

12 14 16 18 20

Figure 6. Comparison of Solutions for Equation 2.8 Using 10 Elements.

mation of the actual value of the excitation intcgral at cach node duc to its inability to
account for the quadratic nature of the forcing function.

The quarter/three-quarter point approximation ol F provides solutions for equations
(2.9) and (2.10) that are quite close to the exact solution at each nodal point. This
technique provides a much better approximation of the area under the forcing function
curve because it discretizes the area into two independent sections, where as the mid-
point technique did not. Thus, this technique is quite accurate in approximating
excitation functions such as x* which are monotonic and quadratic in nature.

The consistent formulation method provides the exact solution for both equations
(2.9) and (2.10) at each nodal point, even when the solution curve has a rapidly changing
gradient such as « = x* as shown in Figure 8. It was expected that this technique would
provide the most accurate solution for all cases as it yiclds the exact arca given by the

Galerkin excitation integral.

1.2

U" = 6X; U(0)=0, U'(2)=12

LEGEND
EXACT (U=X**3)
FEM (MIDPOINT) __
_______ F E_M_%C/ L - 3/4)

1.0
(>oo
C:C:C:

<
=

0.8 0.8 1.0

Figure 7. Comparison of Solutions for Equation 2.9 Using 10 Elements.

i4

N
U = 12X%2; U(0)=0, U'(2)=32
i)
LEGEND /
0__U EXACT (U=X**4) /
o| o UFEM (MIDPOINT] ~
2 UFEM (L4 ~ 3/4 yan
e
© {
0.8 0.8 1.0

Figure 8. Comparison of Solutions for Equation 2.10 Using 10 Elements.

15

C. CONCLUSIONS

Linear shape functions provide an efficient and accurate interpolation for approxi-
mating second order, linear, one dimensional, differential equations using the Galerkin
FEM, regardless of the magnitude of the solution. Therefore, they are utilized
throughout the remainder of the research when approximating linear and nonlinear op-
erators of second order or less. An open question which remains is whether higher order
elements will work for nonlinear two point boundary value problems when linear ele-
ments do not.

Additionally, two important observations regarding the use of a consistent forcing
function analysis are made.

¢ The use of this technique in evaluating the excitation integral provides for a very
accurate solution process. Thus, this method is employed in the remainder of the
research whenever possible. In those cases where the integration cannot be per-
formed analytically, a Simpson’s Rule approximation to the integral is used so that
the resulting error is kept to 2 minimum.

¢ For linear problems, this method provides very accurate approximations over large
domains using a minimum number of elements. To illustrate this point, equation
(2.10) was solved over the domain 0 < x < 10 using only two elements. The FEM
approximation provided the “exact” solution at x=3S5andx =10 as shown in
Figure 9 on page 17.

16

U =12X**2; U(0)=0, U’(10)=4000

9000

8000

9)
2000 3000 4000 5000 6000 7000
: L

1000
|

Figure 9.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Solution of Equation 2.10 Over a Large Domain Using Two Elcments

17

III. ONE DIMENSIONAL SECOND ORDER NONLINEAR SYSTEMS

This chapter outlines various solution strategies which are later analyzed on their
ability to solve second order nonlinear differential equations of the form

Lu+ Luy—-f(x)=0 xeD (3.1.a)

where % denotes linear operators and £() denotes nonlinear operators. Because
equation (3.1.a) is nonlinear, a closed form analytical solution is, in general, not possible.
Therefore numerical solutions are obtained by a variety of approximation techniques.
This chapter sets ¢ : a general procedure, consisting of three steps, for obtaining nu-
merical solutions of equation (3.1.a). The three steps, when used with the Galerkin
FEM, have the effect of transforming the original nonlinear differential equation into a
svstem of linear algebraic equations.

The first step in the procedure consists of a ‘linearization’ of the nonlinear #(u)
term(s). Thus, #(u) is transformed to #'u where #° can be obtained by a number of
different strategies, three of which are described in section I11.A.

Once the nonlinear differential equation, equation (3.1.a), has been transformed to
a linear differential equation of the form

Lu+ L u=f(x) (3.1.5)

the second step is associated with how the #'u term in equation (3.1.b) is evaluated in
the FEM Galerkin integral equations. A number of interpolation procedures are de-
scribed for this step in Section II1.B.

The third step in the solution procedure is defining the iterative process by which a
solution of the linear algebraic equations developed by the Galerkin FEM is obtained.
In particular, the efficacy of the iterative method involves two considerations.

¢ the selection of an initial estimate to begin the iteration

¢ the methodology for subsequent iterations

Section II1.C describes a number of iteration strategies.

Thus sections III.A, I11.B, and 1I1.C cover the three basic steps in the solution
procedure; that is, linearization, interpolation, and iteration. The selection of a partic-
ular strategy within each of these steps defines a specific solution procedure which can

18

be utilized in approximating the solution of equation (3.1.a). In addition to these
sections, section I11.D discusses several numerical aspects which either affect, or are

used in evaluating, the efficacy of a solution procedure.

A. LINEARIZATION STRATEGIES
The first step in analyzing nonlinear equations using the Galerkin FEM is
linearization of the nonlinear term(s). Three different linearization strategies are inves-
tigated in this research. There is no implication that these are the only strategies that
exist.
1. Constant Linearization
The constant linearization method transforms the nonlinear term into a function

of u” where
LWxLu=vu) (3.2.9)

As discussed in Chapter 1, the solution process for nonlinear equations using the
Galerkin FEM is iterative in nature. On the first iteration, «" is set equal to an assumed
value at each node and for subsequent iterations, each nodal value of " is based on the
FEM approximation. Thus, (&) is a known function evaluated at each node and is
taken to the right hand side, leaving a linear equation of the form

QLu=fx)—v(u) (3.2.5)

As an example, consider the nonlinear term «’'u. The constant linearization technique
linearizes this term as v(u’) = («’)'«’, where («’)' is evaluated using finite difference
techniques.
2. Classical Linearization
The classical linearization strategy linearizes the nonlinear term as a known

function coeflicient multiplying the dependent variable where
L)z Lu= (mu))u (3.3.0)

which in a sense maintains the functional nature of the dependent variable by allowing
it to be kept on the left hand side of the differential equation in a linear fashion. Asin
the constant linearization strategy, m(x’) is a known function coefficient where the values

of u* are assumed for the first iteration and are based on the FEM approximation for

19

subsequent iterations. Substituting the results of equation (3.3.a) into equation (3.1.a),
the linearized differential equation takes the form

Lu+ (mu))u = f(x) (3.3.0)

Using the nonlinear term given as an example in the previous section, that is «'u, the
classical linearization technique provides two alternatives. The first is (m(v’)) u = (u")'u
which keeps the full effect of the dependent variable, u . The second is (m(u’)) u = u'v’
which maintains the full effect of the derivative term, «'.
3. Quasilinearization
Quasilinearization is covered extensively by Bellman and Kalaba in [Ref. 1: p.
36] where the nonlinear term is set equal to g(u) and linearized as

Lu)~ SLu= q (u‘) + (u-— u') q’(u‘)

® x . b4 3.4-
= (¢@))u+(q()—u'qw)) (344

Comparing equation (3.4.a) with equations (3.2.a) and (3.3.a), it can be seen that
quasilinearization is a combination of constant and classical linearization with the coef-
ficient functions determined in a different manner. Substituting the results of equation
(3.4.a) into equation (3.1.a), the linearized differential equation becomes

Su+(gW))u=fx)-(q)-uq'W)) (3.4.5)

As an example, consider the u®nonlinear term. The quasilinearization technique defines
q(u) = u’, from which q(«’) = («')* and ¢'(«’) = 2u’. Substitution of these functions into
equation (3.4.a) yields a linearization of the form % 'u= 2u'u — («')®. As «" and u begin
to approach the same value at each node during the iteration process, & u begins to

approach the original nonlinear term, namely

B. INTERPOLATION STRATEGIES

The second step of the solution process is the evaluation of the Galerkin integrals.
Based on the type of linearization strategy utilized, one or both of the following integrals
are obtained.

Linearization Vector: f G h(u)dx (3.5.a)
D

20

Linearization Matrix: J GG! h(u')dxu g (3.5.b)
D

The constant linearization strategy results in a linearization vector where h(x’) in
equation (3.5.a) is replaced by v(u') from equation (3.2.a). The classical linearization
technique yields a linearization matrix where A(x’) in equation (3.5.b) is replaced by
m(u’) from equation (3.3.a). The quasilinearization method utilizes both integrals where
h(u’) becomes (q («) — «’q’(«’)) in equation (3.5.a) and ¢'(«’) in equation (3.5.b). Since
u’ is derived from an FEM approximation utilizing linear shape functions, it varies line-
arly between nodes over each element. Thus, when equations (3.5.a) and (3.5.b) are re-
duced to the element level for evaluation, there are numerous interpolation strategies
available to approximate h(x’). Here, a few strategies are discussed for each of the above
integrals.
1. Linearization Vector

Reducing the integral in equation (3.5.2) to the element level yields

I' -
LG 6.9

which is quite similar to the forcing function integral discussed in Chapter I1I. Three
interpolation techniques similar to those used for the forcing function are examined in
this research. The integral in equation (3.6) yields a 2x1 element vector denoted as f
the “* superscript meaning that the vector changes with each iteration as the values of
u’ are updated. The f’ are then distributed into a system linearization vector denoted as
F’ in accordance with the local to global nodal point correspondence.
a. Midpoint Lumped Approximation

This method evaluates h(x') at the midpoint of the element and brings this
value outside the integral as a constant. Since «" varies linearly over the element, its
value at the midpoint of the element is simply the average of the values of «" at the two

nodes of the element, (&), and (4,,), . Substituting this into equation (3.6) leaves

21

A TICH RN
f =h(———2——) L & d¢

=+ (3.7)

2 l,

2

) h((u,-‘)i+(u;+1)i> >

-l

where h() denotes that the function 4 is evaluated at the argument of ().
b. 1|4 - 3|4 Lumped Approximation
This method takes the A(u’) term inside the shape function vector yielding

L[h(u’)<1 —75-)
f = f €7 |dE (3.8.0)
0

h(u") -f—

In the first term, «° is evaluated at //4 while in the second term it is evaluated at 3//4.
These values are again easily determined due to the linear variation of u" over the ele-

ment and are given by equations (3.8.b) and (3.8.c).

- Ie L] * t 4
u (—4') =(y) + ‘71{ ((“j+1)i — (y)i)

s (3.8.6)
=7 () + vy (441)i

(%]

le

u(

) = () + 73;" (1) = 4))

»|

L. 3 . (3.8.¢)
=7 (y);i + Y (U 1)

Substitution of these expressions for «’ into equation (3.8.a) gives

22

o h

* J.I' h(%(u;)‘+-‘lT(u;+l)l)<l —.f:)
f =
0 h(-}1— () + % (u,l]).)(,ie)
: | (3.8.0)
. h(2w+t (u,lx)a)

B h(TN (“;+‘)‘)

g

==

where again, A() denotes that the function 4 is to be evaluated at ().
c. Linear Approximation
This method evaluates «' in a linear manner over the entire element as a
function of the element coordinate ¢ where

u =)i<1 - -i—) + (u,.‘+,)-l<—fe—> (3.9.a)

Substitution of this expression into equation (3.6) yields

¢
] —-=
f'=J b h((u.‘).<1 _L >+ (u,).(—‘f))dc (3.9.5)
5 1 [‘ 1 le ol
0 Ie

Since h(u") is no longer a constant but a function of £, this integral must be evaluated
for each specific h(«’). Examples of each of these approximations is provided in Ap-
pendix C.
2. Linearization Matrix
At the element level, the integral in equation (3.5.b) becomes

1! T *
Jo gg h(u)dd (3.10)

which is similar to the Galerkin FEM differential operator integral discussed in Chapter
11, with the gg' term producing a 2x2 element matrix. In order to preserve the 2x2 na-
ture of this matrix, A(x’) must remain as a single term multiplying each term in the ma-
trix. Two techniques for evaluating this integral are examined in this research. The

23

resulting 2x2 element matrix is denoted as I’ where the ‘* superscript again indicates that
the matrix is changing with each iteration. These are then distributed into the system
linearization matrix L’ in accordance with the local to global nodal point correspond-
ence.
a. Midpoint Lumped Approximation

This method evaluates «* at the midpoint of the element using the same
process as in the linearization vector analysis and brings h(u") outside the integral as a
constant. Substitution of this expression into equation (3.10) gives

. * l_.—
. ()i + (1) \ (% 2 ¢ ¢
R N
L 3.11)

I RACYVR
- > Ll
L6

where h() denotes that the function A is to be evaluated at ().

Py
o

b. Linear Approximation
This method transforms «’ into a linear function of the element coordinate
¢ as given by equation (3.9.a). This expression is substituted into equation (3.10) giving

¢
W1=—=
' Ie . .
] =J _f_ [l —‘fj f—e] h((uj)1(1 “Iie) + (uj+l)i(-f:>>d¢ (3.12)
0

L,

As for linear evaluation of the linearization vector, equation (3.12) must be evaluated for
each h(«’). An example of each of these approximations is-provided in Appendix D.

C. ITERATION STRATEGIES

Having evaluated the Galerkin integrals and developed a set of linear algebraic
equations, the last step in the solution process is the determination of an iteration
strategy. The main goal of an iteration strategy is to obtain a convergent approximation
in a minimum number of steps while at the same time, keeping the computational effort
of the iteration process to a minimum. Two of the factors which control the rate of
convergence within a specific linearization strategy are

24

e how close the initial assumed values of u" are to the actual solution

¢ the nature in which the FEM solution , «, obtained at the end of each iteration, is
utilized to obtain a value of «" to begin each of the subsequent iterations

1. Initial Iteration

In order to begin any iteration process, an initial estimate, or guess, must be
made as to the value of the variable which is to be determined. The relative accuracy
of this guess with respect to the true solution of the differential equation greatly affects
the ability of the solution process to converge as well as its rate of convergence. If the
starting point for the iteration process is too far away from the actual solution, the
likelihood for divergence or convergence to a nonsolution of the differential equation is
very high.

The first step in formulating an initial iteration strategy is developing an idea
as to what the activity range of the solution of the differential equation might be, i.e.,
how much and how quickly is the dependent variable changing over the prescribed do-
main. Since the solution is not known, this information must be obtained from the
boundary conditions, the domain length, and insight as to the physics of the system.

Two possible combinations of boundary conditions exist for two point bound-
ary value problems.

¢ Essential-Essential (E-E), where the magnitude of the dependent variable is speci-
fied at each end of the domain

¢ Essential-Natural (E-N), where the magnitude of the dependent variable is specified
at one end of the domain, and the slope or rate of change of the dependent variable
is specified at the other end.

The essential-essential combination provides information as to the probable activity
range of the solution over the system domain, which is referred to as function order in
this research and is defined below.

Function Order provides a relative magnitude of the range of values in the solution
function as indicated by two essential boundary conditions. This relative
magnitude is determined by writing the values of the essential boundary
conditions in power ten exponent form and then taking the quotient of the
maximum value over the minimum value. When the minimum valued
boundary condition is 0.0, it should be written as 1 x 10° in order that the
quotient does not become undefined. The magnitude of the exponent in this
quotient defines the function order of the solution while the decimal value
provides a ranking of how different function orders of the same magnitude
compare. For example, take a differential equation which has boundary
conditions of u(0) = 0 and #(2) = 25. These are written in power ten expo-
nent form as u(0) = 1.00 x 10° and u(2) = 0.25 x 10°. The quotient of these

25

two values is 0.25 x 10>. Thus, the solution function is said to have a func-
tion order of two.

When an E-N boundary condition combination is specified, determination of
the dependent variable activity range is not as straight forward as in the E-E situation.
Instead, the activity range must be determined from a knowledge of the physics of the
system as well as the actual values of the specified boundary conditions. The importance
of properly estimating the activity range of the dependent variable cannot be overem-
phasized as this estimation is utilized in determining an initial iteration strategy, which
is the most critical step in the solution procedure.

When the function order is zero or one, or the activity range is determined to
be small based on the physics of the system, the magnitude of the dependent variable
does not change appreciably over the prescribed domain. Thus, a reasonable estimate
of the dependent variable for the first iteration would involve utilizing the essential
boundary condition value(s). To examine the validity of this line of reasoning, the fol-
lowing initial iteration strategies are utilized in the present research when the solution
has a function order of one or less.

® " set equal to the value of the left essential boundary condition.
® u set equal to the value of the right essential boundary condition

® u set equal to the average value of the two essential boundary conditions

When the function order is greater than one, there is a chance that utilization
of any of the above criteria for the initial iteration values could result in divergence or
convergence to a nonsolution of the differential equation. Any number of guesses could
be made for the initial iteration values, but the chances of a random guess providing 2
convergent solution of the differential equation are quite low. Instead, a systematic
approach given by the following four steps is suggested.

e Examine the physical system to which the differential equation applies and deter-
mine which terms on the left hand side of the equation tend to dominate.

¢ Neglect the nondominant term(s) and solve the equation for the dependent variable
by any means possible, i.e., separation of variables, undetermined coefficients,
successive integration, etc.

¢ Determine the value of the dependent variable at each node and let these be the
values used in the initial iteration.

o [f divergence results, reexamine the physical system and reevaluate the dominance
of each of the terms. Then repeat steps two and three.

26

The process of determining initial iteration values that lead to a convergent solution can
be very time consuming and frustrating. But, in most instances when the function order
is greater than one, the selection of initial iteration values that are ‘reasonably close’ to
the actual solution is crucial if a convergent solution is to be obtained.

To amplify the above guidelines, consider a one dimensional constant cross-

sectional area heat fin with nonlinear conduction given by
KT)T" —¢(T-T,)=0 (3.13)

where ¢, is a constant based on the fin geometry and the convection coefficient, and T,
is the temperature of the convective fluid. When the fin is short or the value of k(7T") for
the given range of operating temperatures is much greater than c,, conduction tends to
dominate ard the convection term, ¢,(T — T_), is negligible. A value can then be as-
sumed for k(7) based on the the physical system and boundary condition temperature(s).
The equation thus becomes linear and can be integrated twice to vield T(x). T is then
determined at each node which provides the values used for the initial iteration.

When the constant ¢, is much larger than k(7), the convection term tends to
dominate and conduction can be neglected. Thus, T is set equal to T_ at each node for
the initial iteration. In those cases where conduction dominates over one half of the
domain and convection over the other, 7" can be determined by using a combination of
both these initial iteration strategies. The process of determining an initial iteration
strategy is further developed in IV.A.S.

2. Subsequent Iterations

After the initial values of «’ are determined, the next step is to develop an iter-
ation procedure for subsequent u" values which will result in convergence with the least
amount of computational effort. To aid in this development and subsequent discussions,
the following notation is utilized.

e (u’), is the value of u used in the iteration process where j denotes the node number
and i is the iteration number.

¢ (u), is the value of u returned by the FEM approximation where j and i are defined
as above.
Two different strategies for determining u" are investigated in the present research.
a. Previous Value Strategy
This method takes the value of u from the previous iteration and sets it

equal to «’ for the next iteration process where

27

()i = (1) =y (3.14.q)
n¢
This is the simplest iteration scheme, but does not take into account how u is changing

during the iteration process.
b. Average Value Strategy
This method uses the average value of u from the last two iterations yielding

(;j)i—] + (Ej)x—z
2

(1), = (3.14.5)
This method should enhance convergence when u« is oscillating about the final conver-
gent solution while at the same time not adversely affect those situations where u is
converging monotonically.
c. Additional Strategies

Numerous other strategies can be utilized in an attempt to increase the rate
of convergence. The following are not investigated in this research but are presented as
topics requiring further research.

e K-step Strategy - This method takes into account k previous iterations where

()i + ()i + -+ + ();p

k

® Weighted Average Strategy - A method which assigns a weighting factor to each
iterative value of u where

(), = (3.14.0)

wi(1)i_y + wylu);_,
w, + wy

(3.14.d)

The objective is to find the optimum combination of weighting factors, w, and w,,
that vields the minimum number of iterations.

»
(w)i=

o Weighted K-step Strategy - A combination of the previous two strategies where

o W)y + wy(U)_y + o+ wi(i),_ :
() = — SR L (3.14.¢)

k
2

n=]

® Rate of Change Strategy - This method would require using some from of a Taylor
series expansion to model how u changes from iteration to iteration.

D. NUMERICAL CONSIDERATIONS
The following numerical aspects are considered in evaluating the ability of each
solution procedure to provide a convergent solution of the ncalinear differential

28

equations that are investigated. Again, a solution procedure is a specific combination
of linearization, interpolation, and iteration strategies.
1. Convergence/Divergence

For a convergent solution, the absolute value of the difference between
(%), and (u),_, at each node decreases as the number of iterations, i, increases. In order
to achieve the best approximation for a given number of elements, it is desirable to let
the maximum value of | (%), — (&), | at all nodes reach some minimum value before ex-
iting the iteration process. Thus, the following percent difference convergence criterion
is utilized: convergence is reached when the absolute value of the maximum difference
between (&), and (&),., at any node divided by (&), at the same node it less than .0001
(.01%). This is shown mathematically in equation (3.15) and is but one of many con-
vergence criteria that could be utilized.

Convergence Criterion: .0001 (3.19)

MAX | (@) — (@),] <
(uj)i

The solution procedure is considered a failure if any of the following situations occur.
¢ convergence does not occur within 200 iterations

¢ divergence occurs, i.e., u increases without bound as the number of iterations in-
creases

® convergence to a nonsolution of the differential equation

2. Critical Number of Degrees of Freedom (DOF)

In some instances, especially when the function order is greater than two or the
activity range is large, there may be a specific or critical number of DOF below which
the solution procedure will not converge. To examine this phenomenon, each solution
strategy is initially evaluated using three DOF i.e., two elements. The number of DOF
is then increased until either a grid independent solution is obtained or the number of
DOF exceeds 100; and a critical number of DOF, if it exists, is determined.

3. Stability

Stability in numerical analysis applications is based on the approximation
method’s ability to converge as it relates to the time and displacement discretization that
are utilized. For example, the finite difference explicit method is stable for r < L where

2

r while the Crank-Nicholsen implicit method is stable for any value of r, i.e.,

. V4
(Ax)? ’
unconditionally stable. For this research, three types of stability are defined.

29

¢ Unconditional Stability - There is no critical number of DOF required to guarantee
a convergent solution.

e Conditional Stability - There is a critical number of DOF below which a convergent
solution cannot be obtained.

e Unstable - The solution process diverges regardless of the number of DOF utilized.

4. Multiplicity of Solutions
Nonlinear differential equations do not necessarily have a unique solution. The
equations utilized in this research were developed based on known solutions. When a
solution different from them is obtained, that solution is checked at two different points
in the domain by passing a parabola through the point in question and two adjacent
points. If the equations developed from both of these parabolas satisfy the differential
equation, the solution procedure is considered to have provided a valid approximation.
5. Boundary Condition Effects
Two point boundary value problems require a boundary condition at each end.
Two combinations are valid; either an essential (Dirichlet) boundary condition at each
end or an essential at one end and a natural (Cauchy) at the other. The effect that each
of these combinations has on the performance of each solution procedure is investigated.
6. Computational Efficiency
This research defines the most computationally efficient solution procedure as
the one which provides the most accurate results for the least amount of computer time.
CPU time by itself though is not an effective measure of efficiency. For example, a
solution process that uses two elements will take much less time to run than one with
40, but the 40 element solution is likelv to be much more accurate. There should be
some critical number of elements for a specific solution procedure beyond which the in-
crease in CPU time for the additional calculations is not matched by a proportional in-
crease in solution accuracy.
The different solution strategies in this research are compared using a factor
defined as

CPU" =CPU x average % error (3.16.)

CPU is the amount of computer time (in seconds) required to complete the iteration
process. A timing subroutine installed in the FORTRAN solution program starts when

30

the iteration process is entered and stops when it is exited. Average % error is the av-
erage percent difference between the FEM approximation and the exact solution given
by

N
> 1% errorl,
i=] N = number of system (3.16.5)

;g 0/ = =
avg %o error N degrees of freedom

As the CPU time increases due to an increase in the number of elements, the
percent error should decrease and approach zero. Therefore, the solution strategy
vielding the minimum CPU" is defined as the most computationally efficient for a given
equation and nonlinear operator.

31

IV. APPLICATIONS

A. PRELIMINARIES
1. Equations, Domains, and Boundary Conditions

This chapter evaluates the performance of various combinations of the
linearization, interpolation, and iteration strategies previously developed in solving sec-
ond order, nonlinear, one dimensional, differential equations containing the »? nonlinear
term. In order to investigate the effect of the many numerical considerations described
in the preceding chapter, two nonlinear differential equations over three domains with
appropriate essential and natural boundary conditions are solved. The differential
equations considered were

w-ut=6-9x" oy, =3 4.1
u’ +u’=60x+100x° u,,,=10x° (4.2)

Domains and Boundarv Conditions

¢ Domainl: O0<x<1
Eqn. (4.1) u(0)=0, u(l)=3oru'(1)=6
Eqn. (4.2) u(0)=0, u(l)=10o0ru'(1)=30

¢ Domain2: 0<x<?2
Eqn. (4.1) u(0)=0, u(2)=120ru’'(2)=12
Eqn. (4.2) u(0)=0, u(2)=80oru'(2)=120

¢ Domain3: 0<x<3$

Eqn. (4.2) u(0)=0, u(5)=75oru'(5)=30

Eqn. (4.2) u(0)=0, u(5)= 1250 or u'(5) =750
In all cases the left end point of the domain has an essential boundary condition. Either
an essential or natural boundary condition is provided at the right end of the domain in
order to investigate the effect of the two different boundary condition combinations,
namely essential-essential (E-E) and essential-natural (E-N) as discussed in I11.D.5.

Equations (4.1) and (4.2) were developed by starting with a known solution,

U,...» and working backwards to form a second order nonlinear differential equation.
The equations were kept simple, i.e., only one linear and one nonlinear term, due to the
number of solution procedures that required evaluation, as well as the many numerical
considerations involved. Still, equations (4.1) and (4.2) are viable representations of two

32

engineering phenomena that are described by second order differential equations, such
as

e An axially loaded bar embedded in a nonlinear elastic medium as shown in
Figure 10 on page 34.

¢ A constant cross-sectional area heat fin with internal heat generation and nonlinear
convection as shown in Figure 11 on page 35.
2. Related Engineering Phenomena
a. Bar Problem
Consider the bar problem of Figure 10 subjected to distributed force p(x),
embedded in a nonlinearly elastic media which exerts an opposing distributed force
proportional to the square of the displacement, u. A free body analysis of a differential
element yields

F(x) + dF(x) + p(x)dx — F(x) — u*(x)dx =0 (4.3.0)

Cancelling the F(x) terms, taking the applied excitation p(x) to the right hand side of the
equation and dividing by dx gives

dF
dix) —¥(x) = — p(x) (4.3.5)

From solid mechanics, the following relations are known,

F=0A (4.4.a)

o=¢tE (4.4.b)
= du

e="- (4.4.c)

where F is the axial force, ¢ is the axial stress, A is the cross-sectional area, ¢ is the
strain, and E is Young’s Modulus. Substitution of equations (4.4.c) and (4.4.b) into
equation (4.4.z) provides a relation for the force as

F = EAd/ (4.4.d)
Differentiating equation (4.4.d) with respect to x yields

dE._ x
- =EAv (4.4.¢)

33

Substitution of equation (4.4.c) into equation (4.3.b) leaves
EAu" — u = — p(x) (4.5)

which is similar in form to equations (4.1) and (4.2), if the stiffness, EA, is sct equal to
unity.

\
]

o>

SO
!
y
!

—P» x nonlincar elastic material

. ,
(417 L R+ aF)

u¥(x)
e

Figure 10. Axially Loaded Bar Embedded in a Nonlinearly Elastic Material

b. Heat Fin Problem
Now consider the heat fin problem of Figure 11 on page 35 where q(x) is
the volumetric heat gencration/unit length and the heat transfer coeflicient, h, is a lincar
function of the temperature, T, that is h = aT. An encrgy balance on the {in differential

clement vields
Qeond ~ Q(x)dx - (qcond + dqcond) —d Qeonv = 0 (4.6.0)
Cancelling the q,,,, terms, dividing by dx, and rearranging terms yields

- dqcond _ dqconv
dx dx

= G(x) (4.6.0)

The following rclations are known from hcat transfer principles,

34

dar
and=—k/\67{;' . (4.7.a)

GQeonv = hA:(T— To,,) (4.7.h)

where A, is the cross-sectional area of the fin and is constant, A, is the surface arca of
the fin and is written as Px where P is the perimeter of the heat fin, 7, is the ambicnt
temperature of the convective media, and k is the thermal conductivity coefficient.
Substitution of equations (4.7.a) and (4.7.b) into equation (4.6.b) and performing the

appropnate diflerentiation yvields
KA T = hI(T—T_) = <(x)

Letting h=a7, T, = 0, and dividing through by kA, yiclds

>
T ”'f,lT 7%= k}\ () (4.8.h)
(4 (4

which is similar to equations (4.1) and (4.2) if coeflicient (al’/kA,) is set cqqual to unity.

T

“// hT)=aT

-
ya AN

-
A

/— q(x)

~® Qeona + dqcoml

Figure 11. Heat Fin With Nonlinear Convection

35

3. Function Order and Domain Nondimensionalization

The exact solutions on which equations (4.1) and (4.2) are based, and the three
domains of these equations previously described, were judiciously chosen to provide in-
formation as to the effect of function order on the performance of the solution proce-
dures investigated in this analysis. The function order of each equation was determined
over each domain based on the specified E-E boundary conditions and is provided in
Table 2.

In order to determine whether an advantage is gained by the
nondimensionalization of a domain, the following investigation was undertaken for both
equations over domains two and three with equation (4.1) over domain three provided
as an example. In this case, the dimensional variable x was replaced by the nondimen-
sional independent variable y = x/5. Since dn = dx/5 and x = 57, equation (4.1) was
transformed to

W’ — 254 =150 — 1406254 O<p<1

where differentiation now is with respect to n. Analysis of each nondimensionalized
equation established that the transfer of ‘domain activity’ to ‘differential equation ac-
tivity” did not result in any computational gain.

Table 2. FUNCTION ORDER OF EQUATIONS (4.1) AND (4.2)
Equation Domain Function Order
One 1
(4.1) Two
Three
One
(4.2) Two
Three

HINVIINN

4. General Solution Procedure
Subsequent analyses using the solution procedures discussed next, show that the
efficacy of any particular solution procedure depends strongly on the function order of
the problem being solved. The general solution procedure consists of the three steps;

36

linearization, interpolation, and iteration; shown in Figure 12 on page 38. First,
equations (4.1) and (4.2) are linearized using the linearization strategies developed in
III.A. Secondly, an interpolation strategy developed in I11.B is used with the Galerkin
FEM and the linearized differential equation is transformed into a set of linear algebraic
equations. Finally, these algebraic equations are solved iteratively using various com-
binations of iteration strategies developed in II1.C. The results of each solution proce-
dure, where a solution procedure is a particular set of selected strategies, are then
compared and evaluated based on their performance in approximating the solutions of
equations (4.1) and (4.2).
5. Initial Iteration Strategy

The initial iteration strategy is the weak link in the overall solution procedure.
For function order one problems, the initial iteration strategy is simply to utilize the es-
sential boundary conditions as described in II1.C.1. This is the strategy adopted for
equation (4.1) over domain one, as well as equation (4.2) over the same domain because
the latter problem becomes function order two only at the right boundary point of the
domain.

Another initial iteration strategy is utilized for equations (4.1) and (4.2) over
domains two and three because their function order is greater than one. The physical
systems to which equations (4.1) and (4.2) apply are generic in nature and do not provide
the necessary information for determining which of the terms on the left hand side of the
equation dominate the behavior of the system. However, since each of these equations
is based on a known solution, the terms on the left side can be written as specific func-
tions of x. This information is utilized to devise an initial iteration strategy for each
equation over domains two and three based on the indicated dominance of the linear and
nonlinear terms. Normally, the solution of the nonlinear differential equation is un-
known. In these cases, the physical system must be scrutinized and a determination
made as to which processes and their corresponding operators dominate over each part
of the domain. Having once assessed the dominance of each operator over various parts
of the domain, the following strategies can be utilized to generate the initial iteration

values,

¢ Where the u’ dominates, the initial iteration vector is obtained by solving
u' = f(x).

e Where the u® dominates, the initial iteration vector is obtained by solving u’= f(x)

37

SOLUTION PROCEDURE

NONLINEAR DIFFERENTIAL EQUATION
2u + 2(u)—-—f=20

LINEARIZATION
@ STRATEGY

LINEAR DIFFERENTIAL EQUATION

f*u — =0
FEM WITH
INTERPOLATION
STRATEGY
RECURSIVE LINEAR ALGEBRAIC EQUATIONS
INIT. ITER. STRAT.
SUBS. ITER. STRAT.
_ (i = ITER. C'NTER)

CONVERGED SOLN
AFTER n ITER’S

u,

Figure 12. Solution Procedure for Nonlinear Differential Equations

38

In equation (4.1), u,.,. = 3x* which yields u"* = 6 and u’=9x* These functions
are plotted in Figure 13 on page 40 for the domain 0 < x < 2 and in Figure 14 on page
41 for the domain 0 <x < 5. From Figure 13, the «'' term is slightly more dominant
than the u® term over the first half of the domain. Over the second half of the domain,
the u’ term is clearly dominant. Therefore, an appropriate initial iteration strategy is to
utilize a procedure which neglects the & term in determining the initial values of («),
over 0 < x < 1 and neglects the «’’ term over 1 < x < 2. The first part of the initial value
procedure involves integrating equation (4.1) twice without the imposition of any
boundary conditions. The second part requires taking the square root of the right hand
side of equation (4.1). Thus, the initial iteration values used in solving equation (4.1)
over domain two are determined using equation (4.9).

{3):2—-1%)-::6 O<x<l1

,/9x4—6 1€x<?2

From Figure 14 it is apparent that the &’ term dominates over a majority of the domain.

(4.9)

Thus, the ¥’ term is completely neglected and the initial iteration values are determined

()0 =/ [9x" - 6] (4.10)

Nonlinear differential equation (4.2) was developed using u«,.., — 10x* which
yields «’’ = 60x and «’ = 100x%. These functions are plotted in Figure 15 on page 42 for
a domain of 0 < x < 2 and in Figure 16 on page 43 over domain 0 < x < 5. Examination

using equation (4.10).

of Figure 15 shows the «” term slightly dominating the u” term over the first half of the
domain and the u® term clearly dominating over the second half of the doma:n. Thus,
the same procedure for determining initial iteration values as was utilized for equation
(4.1) over domain two is employed and the results are given by equation (4.11). -

. {10x3+1—;.62x' O<x<l
o=

() 6
\/ 60x + 100x 1<x<?2

1 @.11)

39

150

EQN(4.1) U"-U**2=6-9X**4

27 LEGEND
o . u=e
) el
S

U", U2
75 90 105

60

Figure 13. Dominance of Terms in Equation (4.1) over Domain Two

40

6000

EQN(4.1) U"=U**2=6-9X**4

5500
1

LEGEND
o u'=e
O U2=0X**4

5000
1

U, U2
1500 2000 2500 3000 3500 4000 4500
N |

1000
L.

500
1

0
H—

s)
i !
“q

X

Figure 14. Dominance of Terms in Equation (4.1) over Domain Three

41

(=]
3
™
EQN(4.2) U +U**2=60X+100X**6
© LEGEND
=8 o uU'=60x .
© o UH2=100X*%6
o
=
3
(=}
S
2
»
oo}
jou] §_J
¢]
o
c |
&
(=]
S -
o
g.0

Figure 15. Dominance of Terms in Equation (4.2) over Domain Two

42

1600000

EQN(4.2) U''+U**2=60X+100X**6

=]

g LEGEND

2 8. U =60X
= oIS 00X4*6
[=]

(=]

S |

(=4

N

[=

2

2.

S

U, U2
800000

o

[~

o

[=J

(=]

[--}

[=]

(=1

S

Qo

o

<

e

S

o

[+

o 4— 2
0.0 1.0

Figure 16. Dominance of Terms in Equation (4.2) over Domain Three

43

Over the domain 0 < x < 5, Figure 16 clearly shows the domination of the u” term over
a majority of the domain. Therefore the u’’ term is neglected and the initial iteration
values are determined using equation (4.12).

(4)o = \/ 60x + 100x° (4.12)
The efficacy of the above initial iteration strategies was confirmed by the analyses which
were undertaken.

B. CONSTANT LINEARIZATION
1. Problem Formulation
The constant linearization strategy, described in I11.A.1, transforms the nonlin-
ear term, u’, into a constant linear term as shown in equation (4.13)

wxu=(u) (4.13)
where «" is determined as outlined in II1.C. This process results in a linear differential
equation of the form

=% (u')2 +f(x) xeD (4.14)

where '+ is for equation (4.1), "~ is for equation (4.2) and f(x) represents the excitation
function in each equation. The Galerkin FEM formulation process outlined in Chapter
II transforms equation (4.14) into

G(G"Yu |: - _[DG'(GT)'dx u=+ J-DG(u')zdx + LG f(x)dx (4.15)

where a and b in the first term represent the value of x at the left and right boundary
of the domain, respectively. The left hand side of equation (4.15) is similar to that of
equation (2.2.c) and upon evaluation yields B — Au, where the vector B is only present
when a natural boundary condition is specified. The integrals on the right hand side are
now evaluated.

Linearization Vector, [DG(u')’dx
This integral is evaluated as outlined in I11.B.1 where A(«’) in equation (3.6) is

set equal to (#')’. The detailed formulation of the 2x1 f' element vectors for the three
different interpolation strategies is given in Appendix C with the final results shown in

44

Table 3 on page 45. The 2x1 f’ vectors are then distributed into the system linearization
vector, F*, in accordance with the local to global nodal point correspondence. The F’

vector continuously changes during the iteration process as the values of ¥” are revised.

Table 3. CONSTANT LINEARIZATION ELEMENT VECTORS

Interpolation f
Strategy
A
Midpoint)+ @0 V7
Approximation 2 i
2
2
1/4 - 314 ; (%(";)‘+711'(";“)')
App;'oxim’ation 2

(et

=

Linear

(W@ @), ()
+

I 4 , 6 12 ,
Approximation | | (&) N (@)(%.,), N («..);

12

6

4

Excitation , f G f(x)dx

Transforming x to the element coordinate system, £, the element integral for f

becomes

,.
f=Lgﬂw+®& (4.16)

where a, is the distance from the origin of x to the origin of ¢ of the element for which

f is being evaluated. Equation (4.16) is evaluated using the consistent technique de-

scribed in I1.A, which is detailed in Appendix A, where f() is replaced by the appropri-

ate excitation function in equations (4.1) and (4.2). The resulting 2x1 element excitation

vectors are presented in Table 4 on page 46. The f vectors remain steady (constant)

during the iteration process and are distributed into an NxI system force vector, F, in

accordance with the local to global DOF correspondence.

45

Table 4. ELEMENT FORCE VECTORS FOR EQUATIONS (4.1) AND (4.2)

S(x) f
6— 9t 379 [1] 1[1]_9 [1] 9 [1] 1 ,[1]
1,[3] 2o [1] -6 3] - T3] -Tar4] -5 k] b
30ai[1]+ 102[3]+ s0wt] |] + 100w 3] + 12502 §] +
60x + 100x* 1 s[17 . 100 al? 17,25 /T1

Final FEM Equations
Substitution of the matrix and vector equivalents for each integral into equation

(4.15) yields a system of equations given by

B-—Au=F +F (4.17.a)

where the + sign in equation (4.15) is incorporated into F'. The natural boundary con-
dition vector B, when present for an E-N problem does not change during the iteration
process and is taken to the right side and subtracted from F yielding F,, where the m
subscript indicates that the excitation vector is modified for the given natural boundary
condition. The system of equations then takes the final form of

—Au;=F,, +F (4.17.b)

where subscripts i and i — 1 refer to the iteration counter. Equation 4.17.b is solved it-
eratively for u, with F* changing after each iteration, until convergence is obtained.
2. Results
a. General

Equations (4.1) and (4.2) were each solved over domain one using 24 dif-
ferent solution procedures while 12 different procedures were utilized for both domains
two and three. The FORTRAN programs utilized for the constant linearization strategy
are contained in Appendix E. A summary of the strategies utilized in each solution
procedure is shown in Table 6 on page 49 and Table 7 on page 50 for equation (4.1),
and Table 8 on page 51 and Table 9 on page 52 for equation (4.2), with the following

performance information provided in the results portion of each table.

46

¢ Convergence (I11.D.1)

e Stability (I11.D.3)

¢ Number of iterations required to obtain convergenc:
e Average percent error (I111.D.6)

e CPU" (I11.D.6)

The results for each solution procedure over each of the domains were obtained using
the number of elements shown in Table 5. Though these number of elements are not
necessarily the number required to obtain a grid independent solution for each solution
procedure, they do provide a common baseline upon which the performance of individ-
ual solution procedures for a particular problem may be compared. This is also the
number of elements utilized in the table of results for each of the solution procedures
developed by the other two linearization strategies.

Table 5. NUMBER OF ELEMENTS UPON WHICH SOLUTION PROCEDURE

RESULTS ARE BASED
Equation Domain Number of Elements
1 10
4.1 2 20
3 25
1 20
4.2 2 40
3 50

Two general observations can be made based on the results of Table 6
through Table 9. One is that the constant linearization technique begins to fail as the
function order over the given domain begins to approach two. This is clearly shown in
Table 8 as only half of the solution procedures provided convergent solutions of
equation (4.2), whose function order is just barely two over the domain 0 <x< 1. As
soon as the domain length was increased to 1.1, these remaining methods diverged as
shown in Table 9. This is most likely due to equation (4.2) becoming fully order two
as the domain is increased past x = 1.0. In order to determine where the solutions begin
to breakdown for equation (4.1), the domain was extended in 0.1 increments until all
solutionn procedures diverged. The results of this investigation showed that some sol-
ution procedures for equation (4.1) were able to provide convergent solutions over a

47

domain of 0 <x < 1.7 , which approaches the region where equation (4.1) shifts in
function order from one to two. This failure to provide convergent solutions of
equations (4.1) and (4.2) is not due to a lack of elements used in the approximation, but
is a characteristic of this particular linearization strategy.

The second observation is that the number of iterations required to obtain
convergence is strictly a function of the iteration strategies utilized, both initial and
subsequent, and is independent of the interpolation strategy. Also, it was found that the
number of iterations is independent of the number of degrees of freedom utilized. That
is, the same number of iterations were required to reach convergence whether two or 20
elements were utilized. The accuracy of the approximation, on the other hand, secems
to be independent of the iteration strategy, and only a function of the interpolation
strategy and the number of degrees of freedom. The effect of each problem parameter
in the different solution procedures for both equations (4.1) and (4.2) over domain one
is now examined, as no convergent solutions were obtained for domains two and three.

b. Boundary Conditions

The use of an essential boundary condition at both ends of the domain in-
creased the rate of convergence by a factor of two to five over those strategies which
utilized an essential and natural boundary condition combination. In fact, only three
of the twelve strategies which used an E-N boundary condition combination provided
convergent approximations of the differential equation. Suffice it to say, the essential-
natural boundary condition combination does not produce very efficient results when
utilized with the constant linearization strategy and therefore this strategy should not
be used for E-N problems. That being the case, the remaining comments are directed
at those strategies which utilized an essential-essential boundary condition combination.

c. Initial Iteration Strategy

Each of the initial iteration strategies, described in 1I1.C.1, provided nearly
~he same results within a specific subsequent iteration and interpolation strategy com-
sination when the function order was small, as in equation (4.1). But, when the function
order begins to approach two, as in equation (4.2), the use of the right essential bound-
ary condition for the initial iteration values led to divergence, while the other two strat-
egies provided similar convergent results.

d. Subsequent Iteration Strategy

The use of the previous value strategy (111.C.2.a) generally led to conver-
gence using less iterations than the average value strategy (I11.C.2.b). The main reason
for this is most likely a result of the constant linearization strategy providing for

48

',‘

Table 6. SOLUTION PROCEDURES AND RESULTS USING CONSTANT
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN

ONE
Solution Procedure Results
Domain | fter. | Interp. | B.C.’s . #of | o | cpu
Strat. Strat. Lt | Rt (| Convy Stab. Iter. D‘i)f (sec)
E|E|L| C | s | 7 |048]o0112
Prev. . E | E | M C S 7 0.48 | 0.0081
O<x<1| vae | MOPL M T TR T C | 5 | 8 045 | 00129
E|N|L | C | = |2000] — | —
E|E|L| C | s 7] 0.12 | 0.0028
Prev. E E | M C S 7 0.12 | 0.0028
O<x<]l 1/4.3/4
g Value C“TEITEIRI C | s [8 |o012]00032
E|NIL]| C | — |20 | = | —
E|E| L] C S 7 1 0.16 | 0.0027
Prev. . E E | M C S 7 0.16 | 0.0043
O<x<l L
x Value | “M 4T T E TR C | s | 8 |o016 00043
E[NIL]| C | - |20 | o |
E|E|LJ|C S | 9 |o048]|00127
Avg. . E|E|M]| C| s 7 1 0.50 | 0.0079
O<x<xl Midpt.
<M vame | P TETETR] C | S | 9 |050 00132
EINI|L]| C | s | 38 |027]00270
E|IE|L| C | s | 9 |o12]00025
Ave. E|E | M] C s 7 | 0.12 | 0.0022
O<x<l| «; 1/4-3/4
x Value | ! E|E|R| C | s | 9 |o11 00037
E|INITL] C| S | 38 |031 00286
E|E|L| C S | 9 |ote]|0004
Avg |+ E|E M| C | S | 7 |015] 00035
O<x<l L
x Value | "™ "E T ETR|] C | S | 9 |017 0006
E|INIL] C | s | 38 |047 00471

LEGEND: E = essential boundary condition; N = natural boundary condition;

L =left essential boundary condition; R = right essential boundary condition;

M = average of L and R; C=convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable

NOTES: a - Oscillates between two nonsolutions of the differential equation

49

Table 7. SOLUTION PROCEDURES AND RESULTS USING CONSTANT
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAINS
TWO AND THREE

Solution Procedure Results
Doman | guer | aserp L] | Con stab | KT | % | CPU
0<x<2| Ve | MidPt T T T T T T
o<x<a| v | vy e QLB e e g
0<x<z| Y | Linear [o T
0<x<2| (E | migp [t D Y Lo Lo Lo
o<x<2| Pk | e e B O D o g
0<x<2| {8 | Linear (et OL B L b fom o o
o<x<s| P | igpe [EAE AP
o<xes| o | vage e O D b o
0<x<s| B | Linear (EELONL DL U o o o
0<x<s| (| Midpr O T T T
ocx<s| (B | 13 AT T T
0<x<s| | Linear [A

LEGEND: E =essential boundary condition; N = natural boundary condition;

L = left essential boundary condition; R =right essential boundary condition;

M =average of L and R; C=convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: (1) - See equation (4.9) (2) - See equation (4.10)

50

Table 8. SOLUTION PROCEDURES AND RESULTS USING CONSTANT
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN

ONE
| Solution Procedure Results

Domain | fter. | Interp. | B.C.’s . , #of | o | cPU
Strat. Strat. Lt | Rt ()| Conv{ Stab. Iter. D(i)f (sec)

E E L C S 12 12.9 | 1.4595

Prev. . E E | M C S 13 13.0 | 2.0773
0 <x< l Value Mldpt’ E E R D U ----- e b e
E | N L D C | --—--- R I

E E L C S 12] 2.12 } 0.2198

Prev. E E | M C S 13 1.99 | 0.3380
0<x<l1 Value 11’4"‘3_/4 E E R D U | eeee- N
E (N L D U | - SR —

E E L C S 12 | 4.62 | 0.4922

Prev. . E E | M C S 13 | 4.77 | 0.6664
O<x<l Value Linear ETE R D T - A S
E | N L D U | ----- S

E E L C S 17 12.8 | 1.7412

Avg. . E E | M C S 18 13.1 | 2.8829
O<x<i Value Midpt. E E R D C | S
E | N L ct S 32 S B

E E L C S 17 | 2.22 | 0.3619

Avg. _ E E | M C S 18 1.97 | 0.3799
O<x<l| yajue | 1/4-3/4 E T ETR I D T - —
E | N L c S 32 S I

E E L C S 17 | 4.58 | 0.7091

Avg. . E E | M C S 18 | 4.89 | 1.0410
O<x<l Value Linear E E R D C | «e-- N
E | N L c S 32 ceee | eme-e

LEGEND: E=essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;

M = average of L and R; C=convergence; D = divergence S = unconditional stability;

CS = conditional stability; U = unstable

NOTES: a - Converges to a nonsolution of the differential equation

51

Table 9. SOLUTION PROCEDURES ND RESULTS USING CONSTANT
LINEARIZATION TO SOLVL EQUATION (4.2) OVER DOMAINS

TWO AND THREE
Solution Procedure Results
DO | deer | B [T | Conv] suab| F3T | e | CPU
o<r<a| Biow | Migpr, (e E A Do
o<x<2| Brev | vy PEL MO DL P Lo L
o<x<2| Jret | Linear (£t D4 o Lo
o<x<2| {E | Migpr, ST
o<x<2| {E | 1aya PEA B O B o Lo
0<x<2| (& | Linear |EAE OB o o
o<x<s| B | vigpr |EELOL B LY e o
o<x<s| Brer | vaye EE BB e
o<x<s| D% | Linear e BB LY o
o<x<s| Sk | migpr (e @y DY e o o
o<x<s| fE | vaya [EHE DL B LY o Lo
0<x<s| {8 | Linar (et B L L pem o o

LEGEND: E = essential boundary condition; N = natural boundary condition;

L = left essential boundary condition; R = right essential boundary condition;

M =average of L and R; C=convergence; D = divergence S = unconditional stability,
CS = conditional stability; U = unstable

NOTES: (1) - See equation (4.11) (2) - See equation (4.12)

52

monotonic convergence when used with an E-E combination. The essential boundary
conditions provide a range that the values of u should be between and thus provide
strong guidance during the iteration process. The one exception to this involves those
cases where a natural boundary condition is given at the right end of the domain. In
these instances, only the average value iteration strategy resulted in convergent sol-
utions. This E-N combination does not fix the value of the dependent variable at the
right end, so the approximate solution most likely oscillates about the exact solution
during the iteration process. The average value strategy tends to enhance the conver-
gence of this type of approximation, which might explain why this strategy resulted in
convergence of the E-N problem while the previous value strategy did not.
e. Interpolation Strategy

The 1/4-3/4 interpolation method consistently provided the most accurate
approximations as indicated by the low average percent error values. This is because the
solution function for both equations (4.1) and (4.2) is 2 polynomial function of x and the
1/4-3/4 method was shown in Chapter II to provide better approximations of the inte-
grals of these functions than the midpoint or linear techniques.

J- Overall Performance

The overall performance, which factors both computational effort (i.e., CPU
time) and solution accuracy, of a particular solution procedure is indicated by its re-
spective value of CPU’; where the lower the value, the more efficient the solution pro-
cedure. In Table 6, the CPU times upon which the CPU’ values are based were all at
or below the clock subroutine accuracy of + .03 seconds. Thus, the CPU" values in this
table should be used with caution. A comparison of the solution procedures using av-
erage percent error values (% Dif in Table 6) indicates the previous value iteration
strategy combined with the 1/4-3/4 interpolation strategy provides the most accurate
solution of equation (4.1) over domain one.

Due to the increase in the number of elements and iterations required for
convergence of equation (4.2), more CPU time was required by the solution procedures
in Table 8. Hence, the CPU’ times in Table 8 are all based on CPU times much greater
than the clock subroutine accuracy and therefore are all valid. Again, the combination
of previous value iteration and 1/4-3/4 interpolation strategies provided for the most ef-
ficient procedure.

3. Conclusions
The constant linearization strategy can generally provide approximations of
nonlinear differential equations when the function activity is less than order two over the

53

given domain. The relative ‘crudeness’ of this linearization technique requires that as
much information as possit - concerning the actual value of the dependent variable over
the given domain be known. Thus, the knowledge of an essential boundary condition
at each end of the domain is almost a prerequisite to obtain a convergent solution of a
nonlinear differential equation when using this linearization method. If these conditions
are met, an iteration strategy utilizing the magnitude of the smallest valued boundary
condition for the initial iteration and the previous value strategy for subsequent iter-
ations should result in convergence with a minimum number of iterations and expend
the least amount of CPU time for a given number of degrees of freedom. The 1/4-3/4
interpolation strategy should yield the most accurate approximation as most solutions
of engineering problems are monotonically increasing or decreasing functions, or at
Wworst, convex or concave over the given domain.

C. CLASSICAL LINEARIZATION
1. Problem Formulation
The classical linearization strategy transforms the u” nonlinear term into a linear
term as described in I111.A.2 and shown in equation (4.18)

xS u=uu (4.18)

where u" is determined as outlined in III.C. Substitution of equation (4.18) into
equations (4.1) and (4.2) yields a linear differential equation of the form

W' tuu=f(x) xeD (4.19)

where the -’ is for equation (4.1), the '+’ is for equation (4.2) and f(x) is again the
respective excitation function in each equation. The Galerkin FEM formulation process
transforms equation (4.19) into

G(G'Yu| - I G'(G"ydxu+ f GG u'dxu= f G f(x)dx (4.20)
a Jp D D

The first twc terms on the left side of equation (4.20) again provide B — Au where the
B vector is present only when a natural boundary condition is provided. The integral
on the right side of equation (4.20), which was evaluated in IV.B.1, gives the system
excitation vector, F. The only term remaining to be evaluated is the third term on the
left side of equation (4.20), the linearization matrix integral.

Linearization Matrix , f GG™w'dx u

This integral is evaluated as outlined in 111.B.2 where A(x") in equation t3 10) is
replaced by u’. The detailed formulation of the element linearization matrices, I', for the
two different interpolation strategies is given in Appendix D, with the final results pro-

vided in Table 10. The I’ are then distributed into the system linearization matrix, L',

based on the local to global nodal point correspondence.

during each iteration as the values of " are revised.

The L' matrix is updated

Table 10. CLASSICAL LINEARIZATION ELEMENT MATRICES

Interpolation r
Strategy
_’. L
Midpoint <(":) + (4.),) 6
Approximation 2 44
6 3
Linear L 1300) + (uh) () + (),
Approximation 12 | () +(4.0) (1) + 3(g.y);

Substitution of the matrix and vector equivalents for each integral into equation
(4.20) yields a system of equations given by

B—Au+Lu=F (4.21.a)

where the + sign in equation (4.20) is incorporated into L'. Again, F and B are com-
bined to yield F,, and the system of linear algebraic equations takes the final form

(-A+L{)y=F, (4.21.5)

Equation (4.21.b) is solved iteratively for u, with L;, being calculated using ;, values ,
until convergence is obtained.
2. Results
a. General

Sixteen different solution procedures were utilized to solve equations (4.1)
and (4.2) over domain one and eight procedures were utilized for each equation over
both domains two and three. The FORTRAN programs for constant linearization are
contained in Appendix F. The different strategies utilized in each procedure and the

55

corresponding results are provided in Table 11 on page 56, and Table 12 on page 57 for
equation (4.1); and Table 13 on page 58, and Table 14 on page 59 for equation (4.2).
The number of elements utilized in each solution procedure is shown in Table 5 on page
47.

Table 11. SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN

ONE
Solution Procedure Results
Domain | fter. | Interp. | _B.C.’s . #of | o | cru
Strat. Strat. Lt | Rt (o C°“V+ Stab. Iter. D(;f (sec)
E E L C S 6 0.24 | 0.0048
Prev. - E E I M C S 4 0.24 | 0.0040
O<x<1| vae | MPY T TR 17C | s | 5 |024] 00032
E | N L C S 12 | 0.10 { 0.0030
E E L C S 6 0.16 | 0.0032
Prev.) E E | M C S 4 0.16 | 0.0016
O<x<l Linea
* Value | " TETEIR]|] C | s | 5 |0lo 00038
E N L C S 12 { 0.38 { 0.0115
E E L C S 8 0.24 | 0.0048
Avg.) E E M C S 5 0.24 | 0.0048
O<x<l Midpt.
Value | P TETE TR | C | s | 8 |024 00064
E | N L C S 12 1 0.08 | 0.0019
E E L C S 8 0.16 | 0.0027
Avg.) E E | M C S 5 0.16 | 0.0043
O<x<l Linear
x Value | - E|E|R| C| S | 8 |o016]00043
E | N L C S 12 { 0.36 | 0.0107
LEGEND: E =essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition; -
M = average of L and R; C=convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable

56

Table 12. SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAINS
TWO AND THREE
Solution Procedure Results
Domain | [ter. | Interp. | B.C.'s . #of | o | cpur
Strat. Strat. Lt | Rt ()| Conv, Stab. Iter. D'ff (sec)
Prev. . EIE ()] C S | 17 | 038 00678
0<x<2| vae | M9PL M T 1| c S | 77 | 034 |0.2262
Prev. | .. E|E ()] C | s | 17 |025] 00458
<x<?
0<x Value | MO FE TN 11 € | 5 | 76 | 029 |02239
Avg. . E|E |(1)] C S | 12 | 0.36 | 0.0423
O<x<? Midpt.
x Value | YP" TET TN T ()1 € | s | 18 | 034 | 00572
Avg. . E|E ()| C S | 12 | 0.23 | 0.0298
O0<x<?2
x Value | Y0 P | € | s | 158 | 025 | 0.0465
¢ +| 0.)
0cx<s| Brev | g ETEJm[c s [200]060 2012
Value E|IN|()]| C S | 200+] 0.96 | 3.2696
Prev.] E E | () C’ S 200+ 0.43 | 1.4574
O<x<S5 L r
x Value | "™ FETIN () | C S | 200+] 0.65 | 2.2315
Ave. . EI|E |()] C S | 13 | 060 | 0.1365
O0<x<$§ Midpt.
x Value | VP TET TN (D] C | s | 10 | 06500986
Avg. . E|E ()] C S | 13 | 042 | 00777
0<x<S$
x Value | U FETN T | © S | 13 | 0.42 | 0.0863

LEGEND: E=essential boundary condition; N = natural boundary condition;

L = left essential boundary condition; R = right essential boundary condition;

M =average of L and R; C=convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable

NOTES:

(1) - See equation (4.10)

a - Convergence was imminent and obtained within another 50 iterations

57

Table 13. SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
ONE
Solution Procedure Results
Domain Iter. Interp_ B.C.’s . # of %, CPU"
Strat. Strat. Lt | Rt (1)) Convy Stab. Iter. D(;f (sec)
E|E]|L| C S 9 | 6.94 | 0.7851
Prev. . E|E | M| C S 8 | 6.98 [0.6507
dpt.
O<x<1| vVae | MIOPY FE T T2 17 C T 5 | 10 | 691 | 08740
EIN|LI C S 17 | oo | eeen
E|E|L| C S 9 | 4.61 | 0.4300
Prev. . E|E|M]| C S 8 | 4.66 | 0.5275
O<x<l
x Value | 1P FETE TR T C | s | 10 | 458 | 05785
EIN]L | C s | 2004] s | oee-
ElE|LI| C S 13 | 691 | 1.0120
Avg. . E|E|M| C S 11 | 7.04 |0.9376
O<x< Midpt.
g Value | “PY T E TR I C | 5 | 15 | 690 | 1.1933
E{N]L]| C S 17 | e | ooee-
E|E|L| C S 12 | 457 | 0.5988
Avg. . E|E | M| C S 11 {471 | 06376
O<x<l L
* Value | " T TTE IR |1 C | s | 15 | 457 | 08058
E({N|{L]|cCc | s 17 | o | oeeen

LEGEND: E =essential boundary condition; N = natural boundary condition;

L =left essential boundary condition; R = right essential boundary condition;

M =average of L and R; C=convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable

NOTES:

minent

a - Converges to another solution of the differential equation

b - Convergence to another solution of the differential equation was im-

58

Table 14. SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAINS
TWO AND THREE

Solution Procedure Results
Domain | [ter. | Interp. | _B.C.’s . , #of | o CPU"
Strat. Strat. Lt | Rt (1) Convy Stab. Iter. D‘;f (sec)
Prev. : E|E|lWm] C S 87 | -mem | e
0<x<2| vae | P FETT T T | o 1 2004] om | o
Prev. . E|lE M| C S 95 RN
0<x<?2 Value Linear EIN]O)]| O R T R
Avg. . E E (1) z° S 40 come | mese-
0<x<?2 Midpt. N
x Value | P TE N ()| € | S | 42 | — | —
Avg. . E|E || C S 35 | eeee | e
O<x<?2 Value Linear EINT()| C S 5 S
Prev. . E|E [(D)] (2 | ===~ | 200+] cooe | eooe-
O0<x<3$ Midpt.
x Value | "PY TETIN T(D) | @ | — | 2004] = | —
Prev. . E|E [(D] (2 | --- |200+| ---- | -----
<
O<x<$ Value Linear EINTDO] @ 12004 o |
Avg. . E E{(m} C S | A e
O<x<$ Midpt. :
TS vale | P TEIN T C | S | 80 | - |
Avg. . E E{1)| C S 43 el B
O<x<$ Value Linear EINT| C S 105 | o | o
LEGEND: E=essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M =average of L and R; C= convergence; D= divergence S = unconditional stability;
CS = conditional stability; U= unstable
NOTES: a - Converges to a nonsolution of the differential equation
(1) - See equation (4.12)
(2) - Nonconvergent solution

Three general observations can be made from the results shown in these
tables. The first is that, for solution procedures which yielded valid converged approxi-
mations, the number of iterations to convergence was strictly a function of the initial and
subsequent iteration strategies and independent of the interpolation strategy. Addi-
tionally, the number of iterations to convergence was independent of the numbdr of el-
ements utilized. The accuracy of the solution, on the other hand, was strictly a fujction

59

of the interpolation strategy and the number of degrees of freedom used in the approxi-
mation.

The second observation is that the classical linearization technique provided
valid approximations of equation (4.1) over domain three, but was not able to solve
equation (4.2) over domain two, despite the fact both of these equations over these re-
spective domains have the same function order. The main reason for this lies in the fact
that the solution of equation (4.2) over domain two is changing more rapidly than that
of equation (4.1) over domain three. Thus, it appears that the classical linearization
technique can provide valid approximations of nonlinear differential equations that have
a function order of two, but whose rate of change over the given domain is not ‘exces-
sively’ large.

Last of all, a general comment on the magnitude of the average percent
difference values in Table 13 is in order. Though these values may seem large in relation
to the percent difference values in Table 11 and Table 12, it must be remembered that
these are average values. In this particular situation, the values of the dependent vari-
able over 0 < x < 0.2 are quite small, i.e., on the order of 0.08 and less. Thus, an ap-
proximate solution at one node which is in absolute error of only 0.0023 from an exact
solution value of 0.0100 yields a 23 percent error. Therefore, the larger average percent
difference values stem from minor errors in the approximations at those nodes where the
magnitude of the dependent variable is very small. The overall approximate solutions
provided by these procedures is much better than the average percent difference values
indicate as the actual percent difference values over a majority of the domain was less
than 0.5 percent. The effect of each problem parameter on the performance of the var-
ious solution procedures which provided convergent solutions of equations (4.1) and
(4.2) is now examined.

b. Boundary Conditions

The use of an E-E boundary condition combination provided convergence
with less iterations than the E-N combination in all instances except for the solution of
equation (4.1) over domain three. No explanation for this behavior could be determined
and it remains an open question requiring further investigation. The accuracy of the
approximations within a specific combination of iteration and interpolation strategies
was not greatly affected by the boundary conditions, as the average percent difference

values provided by the E-E and E-N combinations were similar.

60

c. Initial Iteration Strategy

In solving equations (4.1) and (4.2) over domain one, the initial iteration
strategy is developed utilizing the prescribed essential boundary condition(s) as described
in III.C.1. An initial iteration strategy based on the average value of the two essential
boundary conditions consistently provided convergence with slightly less iterations than
the other two strategies.

Over domains two and three, onlv convergent solutions of equation (4.1)
were obtained; no valid approximate solutions were obtained of equation (4.2) over these
domains. Initial iteration strategies defined by equations (4.9) and (4.10) were both
utilized in the analysis over domain two to determine which was most effective.
Equations (4.9) and (4.10) provided nearly thc same numerical values in the approxi-
mation, but the use of equation (4.10) consistently enabled the solution procedure to
converge with less iterations. This behavior requires further research and remains an
open question, as it was felt that equation (4.9), which accounted for the dominance of
the «’’ term over the first part of the domain, should have provided better initial iteration
values. In the solution of equation (4.2) over domains two and three, both initial iter-
ation strategies led to convergent/nonconvergent nonsolutions of the differential
equation.

d. Subsequent Iteration Strategy

Over domain one for both equations (4.1) and (4.2), the use of the previous
value iteration strategy consistently provided convergence with slightly less iterations
than the average value strategy. The one exception to this was when an E-N boundary
condition combination was specified. In that case, both strategies yielded convergence
with the same number of iterations. Over domains two and three, the average value
strategy provided for convergence with significantly less iterations than the previous
value method. This fact is especially evident in the solution of equation (4.1) over do-
main three where the previous value strategy could not converge within 200 iterations
while the average value method provided convergence in 13 iterations or less. These two
observations tend to indicate that the classical linearization strategy provides for
monotonic convergence when the function order is one or less and oscillatory conver-
gence when the function order is greater than one.

e. Interpolation Strategy

The linear interpolation strategy consistently provided more accurate ap-
proximations than the midpoint strategy as indicated by the lower average percent dif-
ference values in Table 11 through Table 13. The main reason for this relates to the

61

fact that the solutions of equations (4.1) and (4.2) are polynomial functions of x. The
number of elements utilized in each of the solution procedures was sufficient e’r'x‘ough to
make the solution curve almost linear over each element. Thus, the linear approxi-
mation induced less error in the evaluation of the Galerkin linearization matrix integral
than the midpoint method. For those cases where only a few elements were utilized, the
midpoint method occasionally provided a more accurate approximation than the linear
strategy. But, the overall accuracy of the approximation was poor due to the decrease
in the number of system DOF.

J- Overall Performance

When the function order of the differential equation solution is one or less,
a solution procedure which utilizes a previous value iteration and linear interpolation
strategy tends to provide the most efficient solutions based on the average percent dif-
ference values in Table 11 and CPU’ values in Table 13. The CPU’ values in Table 11
should be evaluated with caution as the CPU times upon which they are based are at
or below the accuracy level of the clock subroutine which is + 0.03 seconds. When the
function order is greater than one, an average value iteration and linear interpolation
strategy combination provide the most efficient approximation as indicated by the
CPU’ values in Table 12.
3. Conclusions

The classical linearization strategy can generally provide approximations of
second order nonlinear differential equations when the function order is two or less and
the rate of change of the dependent variable is not extremely large. Provided these
conditions are met, an average value iteration strategy combined with a linear interpo-
lation strategy should provide an efficient, valid approximation of the differential
equation. If the function order is later found to be one or less, the use of a previous
value iteration strategy should result in similar numerical results and converge. using
slightly less iterat' ns. In either case, both the E-E and E-N boundary condition com-
binations can be accommodated, although the use of an E-E combination is preferred.

D. QUASILINEARIZATION
1. Problem Formulation
Quasilinearization transforms the nonlinear « term into a linear term using the
relation given by equation (3.4.a), where g(u’) = (')’ and ¢’(«’) = 2u’. Substitution of

these functions into equation (3.4.a) yields

62

WP u=2u"u+ ((u‘)2 —u'u))

. .2 (4.22)
=2uu-—(u)

where «' is determined as outlined in III.C. Substitution of equation (4.22) into
equations (4.1) and (4.2) yields a linear differential equation of the form

wt2u=f(x)+ W) xeD (4.23)

where both ‘-’ signs are for equation (4.1), both '+’ signs are for equation (4.2) and
Sf(x) is the respective excitation function in each equation. The Galerkin FEM formu-
lation process transforms equation (4.23) into

G(G"yu| - f G'(G'ydxu+2 f GG'u dxu= f G f(x)dx + J Gu')dx (4.24)
a Jp D D D

The first two terms on the left side of equation (4.24) yield B — Au where the B vector
is present only when a natural boundary condition is prescribed. The third term on the
left side of the equation is the linearization matrix integral which was evaluated in IV.C.1
and yields L'. Both integrals on the right side of equation (4.24), the excitation and
linearization vector, were evaluated in 1V.B.1 and yield F and F’, respectively.

Substitution of the matrix and vector equivalents for each term into equation
(4.24) yields a system of equations given by

B—Au+2L'u=F+F (4.25.a)

where the + signs in equation (4.24) are incorporated into L" and F'. Combining F and
B to yield F,, the system of linear algebraic equations takes the final form

(—A+2L])u=F,+F, - (4.25.b)

Equation (4.25.b) is solved iteratively for u, with both L' and F’ changing after each it-
eration, where i is the iteration counter.
2. Results
a. General
Forty eight different solution procedures were evaluated in solving
equations (4.1) and (4.2) over domain one while there were twenty four procedures
available for approximating each equation over both domains two and three. The

63

FORTRAN programs for quasilinearization are provided in Appendix G. The different
strategies utilized in each solution procedure and the corresponding results in approxi-
mating the solution of equation (4.1) are provided in Table 15 on page 65 through
Table 19 on page 69. For equation (4.2), this information is provided in Table 20 on
page 70 through Table 25 on page 75. The number of elements utilized in each solution
procedure is given in Table 5 on page 47.

Four general observations can be made about the quasilinearization strat-
egy based on these results. The first is that this linearization technique provided valid
approximations of both equations (4.1) and (4.2) over all domains, although some indi-
vidual solution procedures were much more accurate than others. The difference in
performance between the various solution procedures became noticeable as the function
order approached three or more and the solution function gradient became large, as in
equation (4.2) over domains two and three.

The second point is that this linearization technique provides for conver-
gence with a minimum of iterations due to its quadratic rate of convergence [Ref. 1: pp.
38-40]. Some of the solution procedures utilized to solve equations (4.1) and (4.2) over
domain three converged in just two iterations and thus did not yield as accurate sol-
utions as was anticipated. In order to determine if these solution procedures could
provide more accurate approximations, the convergence criterion was changed from
0001 to .0000001, to allow for slightly more iterations. The effect of changing the con-
vergence criterion for those applicable solution procedures is noted in Table 18,
Table 19, Table 24, and Table 25.

The third point, which also relates to convergence, is that the number of
iterations required for convergence is not always a function of the overall iteration
strategy as it was for the previous two linearization strategies. When the function order
is one or slightly over two, as in equation (4.1) over domains one and two, and equation
(4.2) over domain one, the number of iterations is dictated by the iteration strategies
utilized. For those situations where the function order is almost three or more, the
number of iterations required for convergence also appears to be affected by the specific
combination of interpolation strategies used in the solution procedure.

Table 15. SOLUTION PROCEDURES AND RESULTS USING QUASI-

SIIEgIARIZATlON TO SOLVE EQUATION (4.1) OVER DOMAIN
Solution Procedure Results

Domain B.C.s , .
dr | toverp L BC8) Com] st B0 | | CPY
E|E|L]| C S 4 | 0.00 [0.0000

Prev. | Midpt. | E E [M C S 4 0.00 | 0.0000
O<x<1ivalue |Midpt. [E | E |[R | C | S | 4 | 000 |0.0000
E|N]|L| C S 5 | 0.00 | 0.0000

E|E|L| C S 4 | 0.60 | 0.0100

O<x<l \l/’rev. Midp{t. E E | M C S 4 0.60 | 0.0080
alue | 1'4-34 f E [E [R | C S 4 | 060 |0.0100
E|[N]|L| C S 5 [o0.16 |0.0023

E|E|L| C S 4 | 032 }0.0053

0<x<l \};rev. Migpt. | E |E | M| C S 4 | 032 | 0.0064
alue | Linear [E | E | R | C S 4 | 032} 0.0064
E|E|RI C S 5 | 0.2a | 0.0057

E|E]|L/| C S 4 }0.16 | 0.0021

0<x<y| Prev. | Linear | E |E |M| C S 4 | o0.16 | 0.0021
Value | Midpt. | E | E [R | C S 4 |0.16 | 0.0032
E{N|[L{ C S 5 [061 | 00122

E|E|L]| C S 4 | 0.44 |0.0059

0<x<y| Prev. | Linear |[E [E |M| C S 4 | 0.44a [0.0059
Value | 434 | E | E| R | C S 4 | 044 | 0.0044
E|N]|L|C S 5 | 0.54 | 0.0108

E|E]|L| C S 4 |o.16 | 00027

0<x<1| Prev. | Linear E|E | M| C S 4 | o016 0.0027
Value | Linear | E | E [R | C S 4 |0.16 | 0.0027
E|{N]|]L]| C S 5 | 0.02 | 0.0004

LEGEND: E =essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;

M =average of L and R; C=convergence; D = divergence S = unconditional stability;

CS = conditional stability; U = unstable

65

Table 16. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN

ONE (CONT.)

Solution Procedure Results

Domain B.C.’s , e
T] e | P T Rr] @] Conf sub| f3F | e | coU
E|E|{L| C S 5 1 0.00 | 0.0000
Avg. | Midpt. [E | E [M | C S 5 | 0.00 | 0.0000
O<x<l)] Value | Midpt. | E |E|R| C | S | 6 | 00000000
E|N|L| C S 5 | 0.02 | 0.0004
E|E|L| C S 5 |0.60 | 0.0120
0<x<l ‘,}vg_ Midpt. | E | E [M | C S 5 | 0.60 | 0.0080
alue | 1/14-34 [E | E|R | C S 6 | 061 |0.0141
E|N]JL]| C S 5 | o.11 | 0.0015
E(E|L| C S 5 | 0.32 {0.0053
0<x<l ‘,}\vg, Midpt. E|]E | M C S S 0.32 | 0.0064
alue | Linear | E | E | R | C S 6 | 0.32 [0.0075
E(N]|L| C S 5 |0.27 | 0.0053
E|E|L]| C S 5 | o0.16 | 0.0027
0<r<l ‘évg, Linear E|E|M]| C S 5]0.16 | 0.0032
alue | Midpt. | E | E | R | C S 6 | 0.16 | 00038
E|N|L]| C S 5 1060 | 0.0099
E|E|L| C S 5 | 0.45 | 0.0089
0<x<l ‘;,\a‘;g_ Linear | E| E M| C S 5 | 0.45 | 0.0089
ue | /434 | E | E|R| C S 6 | 044 |00118
E|NJ|L]| C S 5 | 0.53 |0.0070
E|E|L| C S 5 |0.16 | 0.0037
O<x<l \f/\vg. Linear E|E | M C S 5 0.16 | 0.0038
alue | Linear | E | E| R | C S 6 | 0.16 | 0.0037
E|N]JL| C S 5 1036 | 0.0084

LEGEND: E = essential boundary condition; N\ = natural boundary condition;
L = left essential boundary condition; R =right essential boundary condition,;

M = average of L and R; C=convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable

Table 17.

SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN

TWO
Solution Procedure Results

Domain | fter. | Interp. | B.C.'s . #of | o CPU"

Strat. | Strat. | Lt | Rt ()| Convy Stab. Iter. D}’f (sec)
Prev. | Midpt. [E | E | ()| C N 4 { 0.00 [0.0001
0<x<2] value | Midpt. [E [N ()| C | S | 4] 000 |0.0001
0<x<?| Prev. Nllidp’t, E E | C S 4 | 097 |0.0547
Value | 1/4-3/4 [E [N ()] C S 4 0.89 | 0.0475
0<x<2| Prev. | Midpt. E 1—: M| c S 4 | 0.52] 00291
Value | Linear | E | N (1) | C S 5 | 047 [0.0249
O<x<? Prev. Lipear E E €)) C S 4 0.26 | 0.0130
Value | Midpt. { E | N | ()| C S 4 | 022100119
Prev. Linear E E (1) C S 4 0.71 | 0.0424

O<x<?

x Value | 11434 | E | N [(D] C S 4 | 0.69 | 0.0411
0O<x<? \];rev_ Li_near E E. (1) C S 4 0.26 | 0.0137
alue | Linear | E [N [()| C S 4 |{0.27 {00153
O<x<? Avg. | Midpt. E E (1) C S 6 0.00 | 0.0001
Value | Midpt. | E | N (D] C S 5 | 0.00 | 0.0002
Value | I/4-34 | E | N | (D | C S 5 [0.89 [0.0594
0<x<2| Ave | Midpt. E|{E M| C S 5 | 0.51 | 0.0308
Value | Linear | E | N | ()| C S 5] 04700326
O<x<? Avg. Lipear E E- (1) C S 6 0.26 | 0.0198
Value | Midot. | E | N [(D)]| C S 6 | 022100179
0O<x<? Avg. Llinea'r E E. (1) C S 5 0.71 00448
Value | 1'4-34 1 E | N [(1) | C S 5 | 0.69 | 0.0503
0<x<? Avg. L?near E E' (H C S 5 0.26 | 0.0163
Value | Linear | E | N | ()| C S 5 |0.27 | 0.0180

LEGEND: E=essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R =right essential boundary condition;

M =average of L and R; C=convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: (1) - See equation (4.10)

67

Table 18. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN

THREE
Solution Procedure Results
Domain | Jter. | Interp. | B.C.’s . #of | o | CPU
Strat. Strat. Lt | Rt (#)s| Conv{ Stab. Iter. D(i)f (sec)
Prev. |Midpt. | E [E (D[C | S 5 1 0.00 | 0.0002
0<x<S5) value | Midpt. [E [N (D] C | s 6 | 0.04 | 0.0046
Prev. | Midpt. | E | E [() | C S 3 | 1.43 | 0.0948
0<x<3| Vale [1434 [E TN T € 1 s | 7 [155 [02206
v<x<s| Prev. [Midpt. | E JE [(D] C | S | 2 |053]00230
Value | Linear | E | N | (1) | C S 5]0.83 |0.0911
0<x<s| Prev. | Linear | E E Ml c | s 5 1038 | 0.0352
Value | Midpt. | E | N ()| C S 5 | 0.43 | 0.0408
Prev. | Lincar { E | E ()| C° | s 2 | 0.80 | 0.0400
0 5
<¥<| value | 11434 [E [N (D] C | S 3 | 1.08 | 0.0717
0<x<s| Prev. | Linear | E E_ (1) C: S 2 | 0.15 | 0.0063
Value | Linear | E | N | ()| C S 2 | 0.15 | 0.0068

LEGEND: E = essential boundary condition; N = natural boundary condition;

L =left essential boundary condition; R = right essential boundary condition;

M =average of L and R; C= convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable

NOTES: a - Convergence criterion changed to 0.0000001 in order tc allow for ad-
ditional iterations and a more efficient approximation

b - Convergence criterion kept at .0001 as use of tighter criterion in note
a leads to a less efficient or nonconvergent approximation.

(1) - See equation (4.10)

68

hy
Table 19. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
THREE (CONT.)

Solution Procedure Results
Domain | fter. | Interp. | _B.C.'s . , #of | o, | cPU"
Strat. Strat. Lt | Rt (43| Convy Stab. Iter. D(i’f (sec)
Avg. | Midpt. | E | E | (D) C’ S 5 | 0.00 | 0.0001
O<x<5| Value | Midpt. [E | N ()| C | S | 9 |004 00069
0o<r<s| Ave | Midpr. | E | E | (D c’| s 2 | 295 |0.1276
Value | 4314 | E [N ()] C S 9 | 1.55 | 0.2782
0<x<s5| Ave | Midpt. E|E || C S 7 | 0.76 | 0.1040
Value | Linear | E | N [(1)] C S 6 | 0.83 | 0.1049
0<x<5$ Avg. Lipear E E (1) C’ S 7 0.38 | 0.0528
Value | Midpt. | E [N [(1)]| C S 5 | 042 {0.0422
Avg, Linear E E (N C’ S 8 1.05 | 0.1644
O<x<S$)
¥ Value | 1:4-34 [E |~ [(I)] C | S | 4 | 107 | 00818
0<x<5 Avg. Linear E E' (1) C: S 2 3.35 | 0.1559
Value | Linear | E | N [(1) | C S 6 | 0.42 00519

LEGEND: E=essential boundary condition; N = natural boundary condition;

L = left essential boundary condition; R = right essential boundary condition;

M =average of L and R; C=convergence; D= divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Convergence criterion changed to 0.0000001 in order to allow for ad-
ditional iterations and a more efficient approximation

b - Convergence criterion kept at .000] as use of tighter criterion in note
a leads to a less efficient or nonconvergent approximation.

c - Tightening of convergence criterion had no effect

(1) - See equation (4.10)

69

Table 20. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN

ONE
Solution Procedure Results]
, Domain | fter. | Interp. | B.C.’s . #of | o CPU"
Strat. Strat. Lt | Rt ()| Convy Stab. Iter. D(i)f (sec)
E E L C S 5 1.05 | 0.0653
Prev. | Midpt. | E | E [M | C S 11 S
O<x<l|value | Midpt. [E ET R 1| C | s 5 s |
E N L Cc’ S 6 SN T
E E L C) 5 16.1 | 1.0700
Prev. | Midpt. | E]| E | M C’ S 12 I
0<x<l Value | 1/4-3/4 E E R C’ S 5 N
E Y L Cc’ S 6 S I
E E L C S 5 9.28 | 0.6487
Prev. | Midpt. | E | E | M Cc’ S 12 U [
O<x<l Value | Linear | E E R C’ S 5 N
E |N{L Cc’ S 6 i
E E L C S 5 3.61 | 0.2163
Prev. | Linear | E E | M o S 11 I
O<x<l Value [Midpt. | E | E | R C’ S 5 USRI
E AY L C’ S 6 SURR I
E E L C S 5 11.4 | 0.6809
Prev. | Linear | E | E | M| C° S 12 S
O<x<lf Vawe | 11434 [ETETR T & 1 5 T 5 — T —
E N L o S 6 JEU I
E E L C S 5 4.64 | 0.3087
Prev. | Linear | E E | M Cc’ S 12 I
O<x<l Value | Linear | E E R (o S 5 e | e
E | N L Cc’ S 6 S (.

LEGEND: E = essential boundary condition; \ = natural boundary condition;

L = left essential boundary condition; R = right essential boundary condition;

M = average of L and R; C= convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable

NOTES: a - Converges to another solution of the differential equation

70

Table 21. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN

ONE (CONT.)
Solution Procedure Results
Domain | fter. | Interp. | _B.C.’s . #of | o, | cPU
Strat. Strat. Lt | Rt (#)s| Convy Stab. Iter. D‘i)f (sec)
E E L C S 6 1.07 | 0.0852
Avg. {Midpt. | E | E | M| C° | § | 15 | o | -
0<x<1l{ value | Midpt. | E | E | R | C° S 7 S
E |NI|L C’ S 7 R -
E E L C S 6 16.1 | 1.3399
Avg. [Midpt. | E | E |M | C" | S L I
O<x<l Value | 1/4-3/4 | E E R C’ S 7 R R
E{N|L o S 7 SRR .
E E L C S 6 9.30 | 0.7422
O<x<l Avg. | Midpt. E E | M 9 S 15 s | e
Value | Linear | E E R C’ S 7 e | e
E | NJ|L C’ S 7 ceee | oo
E E L C S 3.61 | 0.3486
Avg. | Linear | E | E | M | C S S
O<x<l Value | Midpt. | E E R C’ S 6 S
E | NIL Cc’ S 7 SR (e
E E L C S 7 11.4 | 0.9091
Avg. Linear | E E | M c’ S 16 == | e
0<«<l Value | 1/4-3/4 | E E R C’ S 7 SR
E|N|L Cc’ S e | e
E E L C S 7 4.60 | 0.4440
0<x<]| Avs | Linear E]lE | M C: S R i s
Value | Linear | E E R C S 7 SRR B
E |N|L Cc’ S 7 e | e

LEGEND: E =essential boundary condiiion; N = natural boundary condition;

L =left essential boundary condition; R = right essential boundary condition;

M =average of L and R; C=convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable

NOTES: a - Converges to another solution of the differential equation

71

Table 22. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN

TWO
Solution Procedure Results

Domain | [ter. | Interp. | B.C.’s . #of | o | cpPU
Strat. Strat. Lt | Rt (1)s] Convy Stab. [ter. D(i)f (sec)

Prev. | Midpt. | E | E | ()| C S 4 |4.62°|1.1534

0<x<2| value | Midpt. [E [N | (D] C | S | 3 | 085 |0.1777

. b ¢

0<x<2 \};rev' Midpt. E E (h| cC CS,, 4 |56.6°] 15252
alue | 14-34 | E | N (1) | - | CS" | 200+] d | -----

Prev. | Midpt. | E | E [() | C S 4 | 32.0°]9.0524

O<x<2 Value | Linear | £ [N | (1) | - | CS* [2004} & | ----
0<x<o| Prev. [Linear | E|E (D] C | S | 3 9.68: 2.0618
Value | Midpt. | E | N ()] C S 5 | 27371 92.669

0<x<? ‘l;rev. L,i“?f}’ E E M| c | cs’} 4 38.9; 10.626
alue | 1434 [E | N | ()| C S 5 | 188° | 64.094

0<x<z| Prev. | Linear | ETE (D] C | S | 4 16.0‘: 43182
Value | Linear | E | N | (1) | C S 3 |3.28"| 0.6880

LEGEND: E =essential boundary condition; N = natural boundary condition;

L = left essential boundary condition; R = right essential boundary condition;

M =average of L and R; C= convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable

NOTES: a - Majority of error occurs over 0 < x < 0.2
b - Divergence results when certain number of elements are utilized
¢ - Majority of error occurs over 0 < x < 0.6
d - Provides a reasonable approximation over 1 <x< 2
e - Majority of error occurs over 0 < x < 0.5
S - Majority of error occurs over 0 < x < 0.3
(1) - See equation (4.11)

72

Table 23. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
TWO (CONT.)
Solution Procedure Results
Domain | [ter. | Interp. | _B.C.’s . #of | o CPU"
Strat. Strat. | Lt | Rt ()| Convy Stab. Iter. D(i)f (sec)
Avg. | Midpt. | E | E ()| C S 4 |4.70°] 1.2206
0<x<2| Value | Midpt. [E | N |()| C | S | 4 | 092 |0.2580
. - b -
0<x<?2| AvR ‘V,Ildp,t' E{E|(] C S‘ 4 55.5d 14.952
Value { 1'4-34 { E | N [(D{ C | CS° | 129 | 4877 | 4089.7
0<x<2| Ave | Midpt E E (| ¢ S 4 31.54 9.1124
Value | Linear | E | N | ()| C S 21 | 593¢1} 811.74
. f
O<x<? Avg Llpear E E. (1) C S 4 9.74d 2.4966
Value | Midpt. [E | N [()]| C S 5 12751 88.739
Avg. | Linear | E | E [(D] C S 4 |388°]11.233
0< ;
*<2| Value | 1:4-3:4 E[N[m] C S 5 | 192°| 68.267
. f
0<x<2| Ave | Linear E E 1 C S 4 l6.0a 4.0571
Value | Linear | E | N [(D)]| C S 4 |3.12°| 08615

LEGEND: E =essential boundary condition; N = natural boundary condition;
L =left essential boundary condition; R =right essential boundary condition;

M =average of L and R; C=convergence; D= divergence S = unconditional stability;
CS = conditional stabilitv; U = unstable

NOTES:

a - Majority of error occurs over 0 < x <0.2

b - Majority of error occurs over 0 < x < 0.6
¢ - Divergence results when certain number of elements are utilized
d - Provides a reasonable approximation over 1 <x <2
e - Majority of error occurs over 0 < x < 0.5
[- Majority of error occurs over 0 < x <0.3

(1) - See equation (4.11)

73

Table 24. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN

THREE
Solution Procedure Results
Domain | fter. | Interp. | B.C.'s . #of | o, | cpPU
Strat. Strat. Lt | Rt () Convw Stab. Iter. Dti’f (sec)
Prev. | Midpt. [E | E (D | C S 5 | o0.16 | 0.0875
O<x<3| value | Midpt. [E | ~ |(D | C | S 11 | 0.38 | 0.4189
Prev. | Midpt. | E | E [(D | D U | - et Bl
0<x<5 Value | 1)4-3:4 | E | N | (1) D U | - VR IR
Prev. (Midpt. | E [E ()| D U | - e | e
0<x<3$ Value | Linear | E [N [(1)| D U | - e | meeee
0<x<s| Prev. | Linear | E E M| ¢ c§‘ 2 | 26927 636.11
Value | Midpt. { E { N {(1)| D C | -e--- U .
Prev. | Linear | E [E [(1) | D U | - il e
0<x<5 Value | 1)4-3'4 | E | N ()| D U | -~--- c—e | emmem
Prev. | Linear | E | E [(I C" | S 5 |0.88 | 0.5378
0<x<3) Value | Linear [E [N T C | 5 | 3 |7487] 25872

LEGEND: E =essential boundary condition; N = natural boundary condition;

L = left essential boundary condition; R = right essential boundary condition;

M =average of L and R; C= convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Convergence criterion changed to 0.0000001 in order to allow for ad-
ditional iterations and a more efficient approximation

b - Convergence criterion kept at .0001 as use of tighter criterion in note
a leads to a less efficient or nonconvergent approximation.

:.c - Divergence results when certain number of elements are used

d - Provided an adequate approximation over 2.5 < x < 5.0

e - Majority of error occurs over 0 < x < 0.5 where the values of u < 2.0

(1) - See equation (4.12)

74

Table 25. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN

THREE (CONT.)
Solution Procedure Results
Domain | jter. | Interp. | B.C.’s . #of | o | cpPU
Strat. Strat. | Lt | Rt ()| Conv{ Stab. Iter. D}’f (sec)
Avg. | Midpt. | ELE] C [s 4 |11.1°} 52562
O<x<5| vae | Midpt. [E | N | (1) | C° S 4 106" | 4.8829
Avg. | Midpt. | E | E [() | D U | - il By
0<x<S$ Value | 1/4-3:4 | E | N | (1) D U | «---- e | eeeee
Avg. [Midpt. { E { E ()| D U | - il M
0<x<5 Value | Linear | E | N |(1)| D U | ---- cone | eenen
o I3 d
O0<x<3 Value | Midpt. | E | N {(I)| D v | ----- ceen | e
Avg_ Linear E E (l) C’ S 2 672° | 149.82
0<x<3 Value | 1)4-3/4 | E | N ()| D | G — VR
0<x<s| Ave | Linear | E E (1) C: S 7 | 1.69 | 1.4075
Value | Linear | E [N |[() | C S | 31 | 146 |5.2343
LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M =average of L and R; C=convergence; D = divergence S = unconditional stability;
CS = conditional stability; U= unstable
NOTES: a - Convergence criterion changed to 0.0000001 in order to allow for ad-
ditional iterations and a more efficient approximation
b - Majority of error occurs over 0 < x < 0.5 where the values of 1 < 2.0
¢ - Convergence criterion kept at .0001 as use of tighter criterion in note
a leads to a less efficient or nonconvergent approximation.
d - Provided an adequate approximation over 2.0 < x < 5.0
e - Provided an adequate approximation over 1.5 < x < 5.0
(1) - See equation (4.12)

Last of all, a general comment is required with respect to the average per-
cent difference values in Table 22 through Table 25. As previously noted in IV.C.3, the
value of the dependent variable for equation (4.2) is very small over the first part of the
domain. Thus, errors in the approximation which are on the same order of magnitude
as the value of the dependent variable result in large percent difference values. There-

fore, average percent difference values of three or more are amplified with a superscript

75

which advises the reader as to the true accuracy of the approximation. The term ‘a
majority of error’ in each of these accompanying notes means that the percent diTerence
at each node is 10 percent or more over the indicated domain. The effect of each pa-
rameter on the overall performance of the various solution procedures is now evaluated.
b. Boundary Conditions

Except in a few isolated instances, the accuracy and number of iterations to
convergence for a specific combination of iteration and interpolation strategies was un-
affected by the boundary condition combination utilized. The one exception to this is
shown in Table 20 and Table 21 where the use of a E-N combination caused the sol- .
ution procedure to converge to a second solution of the differential equation. But, when
the initial iteration strategy was changed from using the value of the left boundary con-
dition to the strategy defined by equation (4.12), valid approximations of the solution
u = 10x* were obtained by all procedures using an E-N combination. Thus, it appears
that this linearization technique is quite favorable to both E-E and E-N type boundary
value problems, provided that a valid initial iteration strategy is utilized.

c. Initial Iteration Strategy

Over domain one for equation (4.1), use of the three initial iteration strate-
gies described in II1.C.1 provided convergence with nearly the same number of iter-
ations. Over the same domain for equation (4.2), only the use cf the left essential
boundary condition as values for the initial iteration strategy yielded a convergent ap-
proximation of the original exact solution. The other two strategies, when utilized with
an E-E boundary condition combination, converged to a second solution of equation
(4.2). The reason that the use of the left essential boundary condition for the initial it-
eration strategy outperformed the other two strategies is because it has a value of zero.
With (1), = O, the first iteration solves the differential equation neglecting the effect of
the nonlinear term, as F and L' are zero. Thus, the values of (), utilized in the next
iteration are very close to values of («'), that would have been obtained by neglecting the
u? term and.integrating the differential equation twice with the imposition of boundary
conditions. From Figure 17 on page 77, it can be seen that the u’’ term dominates over .
a majority of the domain. Thus, if equation (4.2) Liad been analyzed as order two over
this domain and the initial iteration strategy developed by neglecting the u® term, similar
results using one less iteration would probably have been obtained.

For equation (4.1) over domain two, the initial iteration strategies defined
by equations (4.9) and (4.10) were both used in the analysis to determine which was most
effective. As in the classical linearization results, they both provided almost identical

76

3 o
EQN(4.2) U"+U**2=60X+100X**6
o
e LEGEND
B..U'=60X .
o U2=100X*%6
g .
E -4
e K
(3]
H
&
b D
e .
24 a
8 .
2 -
e ﬁ* —- T T
0.00 0.25 0.50 0.75 1.00

Figure 17. Dominance of Terms in Equation (4.2) Over Domain One

m

numerical approximations, and the use of equation (4.10) again resulted in convergence
with less iterations. Likewise, equations (4.11) and (4.12) were both utilized as initial
iteration strategies for equation (4.2) over domain two. They both provided the same
accuracy in the approximation, but the use of equation (4.11), which divides the
dominance equally over the domain, converged using less iterations as was originally
expected. The use of equations (4.10) and (4.12) for the initial iteration strategies of
equations (4.1) and (4.2), respectively, over domain three, lead to accurate approxi-
mations for those solution procedures which did converge.
d. Subsequent Iteration Strategy
The use of either the previous value or average value iteration strategy, in
general, had no effect on the number of iterations required for convergence. This is most
likely due to the quadratic rate of convergence guaranteed by the quasilinearization
method, as previously mentioned in IV.D.2.a.
e. Interpolation Strategy
The quasilinearization method requires the use of two interpolation strate-

gies; one for the linearization vector and one for the linearization matrix. In the in-
terpolation strategy column of Table 15 through Table 25, the upper strategy is for the
linearization matrix and the lower one is for the linearization vector. A general trend in
th 1ccuracy provided by the various combinations of interpolation strategies is evident.
The different combinations are ranked from least to most accurate in the following list,
where the first strategy indicated is for the linearization matrix and the second is for the
linearization vector.

¢ Midpoint;1/4-3/4

e Linear;1/4-3/4

e Midpoint;Linear

¢ Linear;Midpoint

e Linear;Linear

¢ Midpoint;Midpoint

Two conclusions can be drawn from the above list. First is that the most
accurate interpolation strategies utilize the same interpolation technique for both
linearization integrals. Thus, if a 1/4-3/4 interpolation strategy for the linearization
matrix had been developed, there is a good possibility that an overall 1/4-3,4;1/4-3/4
interpolation strategy would have provided accurate approximations. Second, the least

78

refined interpolation strategy, namely midpoint;midpoint, provides the most accurate
approximations. This result is not very surprising, as in many situations, the simplest
method provides the best results.

J- Overall Performance

In almost ali cases, the solution procedure consisting of a previous iteration
and a midpoint;midpoint interpolation strategy provided the most efficient approxi-
mations regardless of the function order of the equation or the boundary conditions
imposed. The only case where this procedure faltered slightly was in approximating
equation (4.2) over domain two. But, as shown in note a of Table 22 and Table 23, it
only had a problem approximating the solution over that part of the domain where
u<0.1. The solution procedure utilizing a previous value iteration and a linear;linear
interpolation strategy was not quite as efficient as the above solution procedure, but
performed in an acceptable manner.
3. Conclusions

Quasilinearization provides a viable method of approximating nonlinear differ-
ential equations that contain the «° term, regardless of the function order of the equation
and the nature of the boundary conditions imposed. The use of a previous value iter-
ation and either a midpoint;midpoint or linear;linear interpolation strategy should pro-
vide an accurate approximation with a minimum number of iterations, provided that the
initial iteration strategy is adeptly chosen. The actual shape of the solution curve and
the discretization invoked, i.e., the number of elements, are the two factors most likely
to determine which interpolation technique provides the more accurate approximation.

E. FINAL REMARKS

An overall solution procedure involving quasilinearization combined with a previous
value iteration and either a midpoint;midpoint or linear;linear interpolation strategy
provides excellent approximations of second order, nonlinear, one dimensional, differ-
ential equations which contain the u® nonlinear term. As the u® term has a more non-
linear nature than some of the other nonlinear terms encountered, i.e., u’'u, («')?, etc.; it
is felt that this solution procedure should provide viable approximations of many non-
linear, second order differential equations. It cannot be overemphasized that the success
or failure of the above solution procedure depends greatly on the initial iteration strategy
developed. Thus, utilization of this solution procedure requires that the user have an
in-depth understanding of the physics involved in the system being analyzed.

L

This research has provided a fundamental baseline for the future investigation of
techniques for solving nonlinear differential equations. The following steps provide a
logical progression for determining the actual capabilities of a Galerkin FEM solution
procedure utilizing quasilinearization.

e Conduct an analysis of second order, one dimensional, nonlinear, differential
equations which contain nonlinear terms other than u’. These nonlinear equations
should be of an engineering nature for which experimental data exists to allow for
a confirmation of the results developed by the mathematical model.

¢ Investigate the ability of this solution method to solve one dimensional, nonlinear,
fourth order differential equations. This requires some modification of the in-
terpolation strategies as the Galerkin FEM must utilize cubic shape functions for
developing a fourth order differential equation approximation.

e Extrapolate the concepts and principals developed by this and future research to
the solution of two dimensional, second and fourth order, nonlinear differential
equations.

80

APPENDIX A. FORCING FUNCTION FORMULATION STRATEGIES

On an elemental level, [:G(Gx)dx . becomes [8(6(x; + £))d¢ where
e £ is the local element coordinate, 0 < ¢ </,

® a,is the sum of all element lengths prior to the element being evaluated. For equal
length elements, a, = (i — 1)/, where / is the element number.

Midpoint Lumped Approximation

l
This method evaluates 6(a + &) at the midpoint of the element, ¢ = ?' and brings it

outside the integral as a constant yielding

¢
f=6(a+ ¢ JI' T d
NN e [
le
- (4.1
l
a+ ?e
=3, !
e
a+ 2]
Quarter/ Three Quarter Lumped Approximation
This method takes 6(a + £) inside the shape function vector yielding
B é '}
4| (6 + :»(1 - ,—)
f=f ; S/ \as (4.2.0)
o] (6la+¢))(T)
(4

l 3
The first 6(a + &) term is evaluated at & = 7’ and the second term at ¢ = T , yielding

81

(4.2.)

]

3,

Consistent Evaluation
This method calculates the exact value of the Galerkin excitation integral yielding

-~

f=6 J:’ | (a0 + &)t

af ——5—+5 -5 | (4.3)

0

r

-

[3al,+ 12
| 3al, + 24

82

APPENDIX B. PROGRAM LISTINGS AND RESULTS FOR THE
LINEAR APPLICATION OF THE GALERKIN FEM

C Fededeedere dere ek e R ek R e e e de b kv e s e ok b ab Yo ke deabat e e ak e e e ve sk st b sk st ab ok b b b at ok sk b st ot ook ok
c * PROGRAM LIN1 *
Cc * *
c * THIS PROGRAM SOLVES THE DIFFERENTIAL EQUATION U" = 2., 0<X<2 *
C * U(0)=0; U'(2)=4 WITH UEXACT=X**2, *
C Feverederered vedede e e e vedrrbdevede Te e e e dedk v dle vt R Ve v v e e s v b vk v de e e v e e e v st e e e e e e Ve v e e e vk o

110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
: ELEN, ICORR(100,2) ,NEL,NSNP

C INPUT NUMBER OF ELEMENTS AND TOTAL LENGTH OF DOMAIN

120 PRINT*,'INPUT NUMBER OF ELEMENTS DESIRED AND TOTAL LENGTH.'
130 READ(6,*) NEL,TLEN

c CALCULATE NUMBER OF NODAL POINTS AND DEFINE LEFT BOUNDARY OF
c DOMAIN

135 NSNP=NEL+1
150 COORD(1)=0.

c DETERMINE ELEMENT LENGTH, LOCAL TO GLOBAL NODAL POINT
c CORRESPONDENCE, AND X-COORDINATE OF EACH NODAL POINT

155 ELEN=TLEN/FLOAT(NEL)
160 DO 169 IEL~1,NEL

162 ICORR(IEL,1)=IEL
163 ICORR(IEL,2)=IEL+1
164 COORD(IEL+1)=COORD(IEL)+ELEN

169 CONTINUE

C CALL SUBROUTINE SYM1A TO DETERMINE A MATRIX AND F VECTOR AND SOLVE
c THE LINEAR SYSTEM OF EQUATIONS AU = F

170 CALL SYM1A

c CALL SUBROUTINE UX2EXT TO DETERMINE EXACT SOLUTION
190 CALL UX2EXT

c CALL SUBROUTINE OUTLIN TO OUTPUT RESULTS

200 CALL OUTLIN
210 END

83

Fedededevedrdededede e dededededevededededede e e sk s e dbae v e ek sk ded e e ek e e s et dedb e de dede et e e e
* SUBROUTINE SYM1A e *
* *

* THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *

* PROGRAM LIN1 AND SOLVES THE LINEAR SET OF EQUATIONS AU = F. *
Fedededredededrdedeiedeirieiniedeirioiedeitdeibidooer oo iekedokadnine ekt deoleied - v

aaoaoaann

100 SUBROUTINE SYM1lA

110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
: ELEN, ICORR(100,2) ,NEL,NSNP
120 DIMENSION AE(2,2), FS1E(2), FS2E(2), WKAREA(40600)

c ZERO OUT A MATRIX AND F VECTOR

140 DO 210 IZ = 1,NSNP 4
150 FT(1Z) = 0.

160 DO 200 JZ = 1,NSNP

170 A(12,3Z2) = 0.

200 CONTINUE

210 CONTINUE

213 ALPHA=0.

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

215 DO 375 IEL=1,NEL
c DETERMINE ELEMENTAL A MATRIX AND ELEMENTAL F VECTOR

220 AE(1,1)=1. /ELEN

230 AE(1,2)=(-1. /ELEN)

240 AE(2,1)=AE(1,2)

250 AE(2,2)=AE(1,1)

260 FS1E(1)=ELEN

265 FS1E(2)=ELEN

c DISTRIBUTE AE MATRICES AND FE VECTORS INTO SYSTEM A MATRIX AND F

C VECTOR

300 DO 370 1I=1,2

310 DO 350 JJ=1,2

320 IN=ICORR(IEL,1I)

330 JN=ICORR(IEL,JJ) ' .
340 ACIN,JN)=A(IN,JN) - AE(II,JJ)

350 CONTINUE

360 FT(IN)=FS1E(II) + FT(IN) .
370 CONTINUE

372 ALPHA=ALPHA + ELEN

375 CONTINUE
C IMPOSE KINEMATIC AND NATURAIL BOUNDARY CONDITIONS
376 A(1,1)=1.

377 A(1,2)=0.
378 FT(1)=0.

84

379 FT(NSNP)=FT(NSNP)-4.

380 M=)
390 IDGT=3
400 IQ=100

c CALL SUBROUTINE LEQT2F TO SOLVE AU = F

410 CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA, IER)
420 DO 440 NEW=]1,NSNP

430 U(NEW)=FT(NEW)

440 CONTINUE

450 RETURN

460 END

85

aaoaan

100
110

130
140
150
160
170

ek Feder bRtttk eabab st s deredr el de s ke e de e e dedede e dede s dr e dedestrdedede e etk

*
%*

SUBROUTINE UX2EXT

*
*

* THIS SUBROUTINE COMPUTES THE VALUE OF U=X¥*2 AT THE SPECIFIED *

* NODAL POINTS FOR MAIN PROGRAM LINI.

*******w**

SUBROUTINE UX2EXT

COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
: ELEN, ICORR(100,2) ,NEL,NSNP

DO 150 NN = 1,NSNP

UEXT(NN)
CONTINUE
RETURN
END

= COORD(NN)**2

86

SOLUTION OF U" = 2. USING CONSISTENT FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF
0. 000 0. 0000 0. 0000 0.0
0. 200 0. 0400 0. 0400 0.0
0. 400 0. 1600 0. 1600 0.0
0. 600 0. 3600 0. 3600 0.0
0. 800 0. 6400 0. 6400 0.0
1. 000 1. 0000 1. 0000 0.0
1. 200 1. 4400 1.4400 0.0
1.400 1. 9600 1. 9600 0.0
1. 600 2.5600 2.5600 0.0
1. 800 3. 2400 3. 2400 0.0
2. 000 4.0000 4.0000 0.0

87

anoaoaoan

110

120
130

135
150

155
160
162
163
164
169

170

190

200
210

Feresesr A dbdboiedederesedr e drdededbde dedeatededertertedede b deob e ke deddede ke dedede e dese skt e e dede e dede e

* PROGRAM LIN2 *
%

* THIS PROGRAM SOLVES THE DIFFERENTIAL EQUATION U" = 6X, 0<X<2 *
* U(0)=0; U'(2)=12 WITH UEXACT=U%*3, *

Fevedededrredederrainbedededr b stvesha e e v st ddlesk e e e e db st dede dededede dededeedledede e e e e

COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100)},

: ELEN, ICORR(100,2),NEL,NSNP

INPUT NUMBER OF ELEMENTS AND TOTAL LENGTH OF DOMAIN

PRINT*, ' INPUT NUMBER OF ELEMENTS DESIRED AND TOTAL LENGTH.'
READ(6,*) NEL,TLEN

CALCULATE NUMBER OF NODAL POINTS AND DEFINE LEFT BOUNDARY OF
DOMAIN

NSNP=NEL+1
COORD(1)=0.

DETERMINE ELEMENT LENGTH, LOCAL TO GLOBAL NODAL POINT
CORRESPONDENCE, AND X-COORDINATE OF EACH NODAL POINT

ELEN=TLEN/FLOAT(NEL)

DC 169 IEL=1,NEL
ICORR(IEL,1)=IEL
ICORR(IEL,2)=IEL+1
COORD(IEL+1)=COORD(IEL)+ELEN

CONTINUE

CALL SUBROUTINE SYM2A TO DETERMINE A MATRIX AND F VECTOR AND SOLVE
THE LINEAR SYSTEM OF EQUATIONS AU = F

CALL SYM2A

CALL SUBROUTINE UX3EXT TO DETERMINE EXACT SOLUTION
CALL UX3EXT

CALL SUBROUTINE OUTLIN TQ OUTPUT RESULTS

CALL OUTLIN
END

88

aaoaooan

Fedekdkdokdede i fdrdfrirRdofe R dehd o Rdied o dede et he ke de e dedede it e dedede e dedede ek

* SUBROUTINE SYM2A :
*
* THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN ¥

* PROGRAM LIN2 AND SOLVES THE LINEAR SET OF EQUATIONS AU = F. *
Fededededededcielededeidededededokdeddeioiiolodeideleledeieieieioioidviedodoioirdedeieieioieioidieiodoiofolorn ook

SUBROUTINE SYM2A
COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),

: ELEN, ICORR(100,2),NEL,NSNP

DIMENSION AE(2,2), FS1E(2), FS2E(2), WKAREA(40600)
ZERO OUT A MATRIX AND F VECTOR

DO 210 IZ = 1,NSNP

FT(1Z) = 0.
DO 200 JZ = 1,NSNP
A(I1Z,JZ) = 0.
CONTINUE
CONTINUE
ALPHA=0.

PRINT*, 'WHAT TYPE OF FORCING FUNCTION IS TO BE USED?'
PRINT*, 'MIDPOINT = 1; 1/4 -3/4 APPROX = 2; CONSISTENT = 3'
READ(6,*) NFF

ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR
DO 375 IEL~=1,NEL
DETERMINE ELEMENTAL A MATRIX AND ELEMENTAL F VECTOR

AE(1,1)=1. /ELEN

AE(1,2)=(-1. /ELEN)

AE(2,1)=AE(1,2)

AE(2,2)=AE(1,1)

IF (NFF.EQ.1) THEN
FS1E(1)=3. *ELEN*(ALPHA+ELEN/2.)
FS1E(2)=FS1E(1)

ELSEIF (NFF.EQ.2) THEN
FS1E(1)=3. *ELEN*(ALPHA+ELEN/4.)
FS1E(2)=3. *ELEN*(ALPHA+3. *ELEN/4.)

ELSE
FS1E(1)=3. *ALPHA*ELEN+ELEN#**2
FS1E(2)=3. *ALPHA*ELEN+2. *(ELEN**2)

ENDIF

DISTRIBUTE AE MATRICES AND FE VECTORS INTO SYSTEM A MATRIX AND F
VECTOR

DO 370 II=1,2
DO 350 JJ=1,2
IN=ICORR(IEL,II)
JN=ICORR(IEL,JJ)
A(CIN,JN)=A(IN,JN) - AE(II,JJ)
CONTINUE
FT(IN)=FS1E(II) + FT(IN)

89

370
372
375

376
377
378
379
380
390
400

410
420
430
440
450
460

CONTINUE
ALPHA=ALPHA + ELEN
CONTINUE

IMPOSE KINEMATIC AND NATURAL BOUNDARY CONDITIONS

A(1,1)=1.

A(1,2)=0.

FT(1)=0.
FT(NSNP)=FT(NSNP)-12.
M=1

IDGT=3

1Q=100

CALL SUBROUTINE LEQT2F TO SOLVE AU = F

CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
DO 440 NEW=1,NSNP
U(NEW)=FT(NEW)
CONTINUE
RETURN
END

Fedederededederede derbvededdedede v st dededede dedb b e e e e vk dede st dededbabdededbde dedede dededede e dededbdedre e e e de ook

* SUBROUTINE UX3EXT g *
* *
* THIS SUBROUTINE COMPUTES THE VALUE OF U=X**3 AT THE SPECIFIED *

* NODAL POINTS FOR MAIN PROGRAM LIN2. *
Federerededededododedodedeiod ik ddeiicdeicidinileirioniriedoieioiokokodokdedefrostdedrirdrioledodededofoledededededked

aaoaaaa

100 SUBROUTINE UX3EXT

110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
: ELEN, ICORR(100,2) ,NEL,NSNP

130 DO 150 NN = 1,NSNP

140 UEXT(NN) = COORD(NN)#*%3
150 CONTINUE

160 RETURN

170 END

91

SOLUTION OF U" = 6X USING LUMPED MIDPOINT FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF
0. 000 0. 0000 0. 0000 0.0
0. 200 0. 0080 0.0120 50.0
0. 400 0. 0640 0.0720 12.5
0. 600 0. 2160 0. 2280 5.6
0. 800 0.5120 0.5280 3.1
1. 000 1. 0000 1. 0200 2.0
1.200 1.7280 1.7520 1.4
1.400 2.7440 2.7720 1.0
1. 600 4.0960 4.1280 0.8
1. 800 5.8320 5.8680 0.6
2. 000 8. 0000 8. 0400 0.5

92

SOLUTION OF U" = 6X USING 1/4 - 3/4 LUMPED FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF
0. 000 0. 0000 0. 0000 0.0
0. 200 0. 0080 0. 0060 -25.0
0. 400 0. 0640 0. 0600 -6.3
0. 600 0. 2160 0. 2100 -2.8
0. 800 0.5120 0. 5040 -1.6
1. 000 1. 0000 0.9900 -1.0
1. 200 1.7280 1.7160 -0.7
1. 400 2.7440 2.7300 -0.5
1. 600 4.0960 4,0800 -0.4
1. 800 5.8320 5.8140 -0.3
2. 000 8. 0000 7.9800 -0.2

93

SOLUTION OF U" = 6X USING CONSISTENT FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF
0. 000 0. 0000 0. 0000 0.0
0. 200 0.0080 0.0080 0.0
0. 400 0. 0640 0. 0640 0.0
0. 600 0. 2160 0.2160 0.0
0. 800 0.5120 0.5120 0.0
1. 000 1. 0000 1. 0000 0.0
1. 200 1.7280 1.7280 0.0
1.400 2.7440 2.7440 0.0
1. 600 4.0960 4.0960 0.0
1. 800 5.8320 5.8320 0.0
2.000 8. 0000 8. 0000 0.0

C Fedeedederidehdededdededred e dedriek et e e dedeede dededet okl ek
c * PROGRAM LIN3 *
c * *
c * THIS PROGRAM SOLVES THE DIFFERENTIAL EQUATION U" = 12X#%2, *
c * 0 <X <2 U(0)=0; U'(2)=32 WITH UEXACT=X**4 *
C Fedriedededesededededededederr e deledededed dedededdedededrdededeededrdededidedeoieoioiol e

110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
: ELEN, ICORR(100,2),NEL,NSNP

C INPUT NUMBER OF ELEMENTS AND TOTAL LENGTH OF DOMAIN

120 PRINT*,'INPUT NUMBER OF ELEMENTS DESIRED AND TOTAL LENGTH.'
130 READ(6,*) NEL,TLEN

c CALCULATE NUMBER OF NODAL POINTS AND DEFINE LEFT BOUNDARY OF
c DOMAIN

135 NSNP=NEL+1
150 COORD(1)=0.

c DETERMINE ELEMENT LENGTH, LOCAL TO GLOBAL NODAL POINT
c CORRESPONDENCE, AND X-COORDINATF OF EACH NODAL POINT

155 ELEN=TLEN/FLOAT(NEL)

160 DO 169 IEL=1,NEL

162 ICORR(IEL,1)=IEL

163 ICORR(IEL,2)=IEL+1

164 COORD(IEL+1)=COORD(IEL)+ELEN
169 CONTINUE

c CALL SUBROUTINE SYM3A TO DETERMINE A MATRIX AND F VECTOR AND SOLVE
c THE LINEAR SYSTEM OF EQUATIONS AU = F

170 CALL SYM3A

C CALL SUBROUTINE UX4EXT TO DETERMINE EXACT SOLUTION
190 CALL UX4EXT

C CALL SUBROUTINE OUTLIN TO OUTPUT RESULTS

200 CALL OUTLIN
210 END

95

c dedededededededededeiviehedededeiedeieddedieioiedededeiodedededededeiededededeeiedededeiodededk driedededeiedrledededeodeodedeiek
c * SUBROUTINE SYM3A ¥*
C * *
c * THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *
C * PROGRAM LIN3 AND SOLVES THE LINEAR SET OF EQUATIONS AU = F. ¥
C Fevert fedevedeedededeevedededrvededede e dedederedede s dedede v drdededtatdedededr e ededede o dedede e dede dede dededede de e dedodede

100 SUBROUTINE SYM3A

110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
: ELEN,ICORR(100,2),NEL,NSNP

120 DIMENSION AE(2,2), FS1E(2), FS2E(2), WKAREA(40600)

c ZERO OUT A MATRIX AND F VECTOR
140 DO 210 IZ = 1,NSNP

150 FT(1Z) = 0.

160 DO 200 JZ = 1,NSNP

170 A(1Z2,JZ) = 0.

200 CONTINUE

210 CONTINUE

213 ALPHA=0.

214 PRINT*,'WHAT TYPE OF FORCING FUNCTION IS TO BE USED?'

215 PRINT*,'MIDPOINT = 1; 1/4 -3/4 APPROX = 2; CONSISTENT = 3'
216 READ(6,*) NFF

c ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR
217 DO 375 IEL=1,NEL

c DETERMINE ELEMENTAL A MATRIX AND ELEMENTAL F VECTOR
220 AE(1,1)=1. /ELEN

230 AE(1,2)=(-1. /ELEN)

240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(1,1)

263 IF (NFF.EQ. 1) THEN

264 FS1E(1)=6. *ELEN*(ALPHA+ELEN/2.)*%2

265 FS1E(2)=FS1E(1)

266 ELSEIF (NFF.EQ.2) THEN

267 FS1E(1)=6. *ELEN*(ALPHA+ELEN/4.)**2

268 FS1E(2)=6.*ELEN*(ALPHA+3. *ELEN/4.)¥**2

269 ELSE

270 FS1E(1)=6. *(ALPHA**2)*ELEN+4. *ALPHA*(ELEN*¥*2)+ELEN¥*3
271 FS1E(2)=6. *(ALPHA**2)*ELEN+8. *ALPHA*(ELEN**2)+3. *ELEN**3-

272 ENDIF

c DISTRIBUTE AE MATRICES AND FE VECTORS INTO SYSTEM A MATRIX AND F
c VECTOR

300 DO 370 I1I=1,2

310 DO 350 JJ=1,2

320 IN=ICORR(IEL,II)

330 JN=ICORR(IEL,JJ)

340 ACIN,JN)=A(IN,JN) - AE(II,JJ)
350 CONTINUE

360 FT(IN)=FS1E(II) + FT(IN)

96

370

376

CONTINUE
ALPHA=ALPHA + ELEN
CONTINUE

IMPOSE KINEMATIC AND NATURAL BOUNDARY CONDITIONS

A(1,1)=1.

A(1,2)=0.

FT(1)=0.
FT(NSNP)=FT(NSNP)-32.
M=1

IDGT=3

1Q=100

CALL SUBROUTINE LEQT2F TO SOLVE AU = F

CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA, IER)
DO 440 NEW=1,NSNP
U(NEW)=FT(NEW)
CONTINUE
RETURN
END

97

aaoaoaan

100
110

130
140
150
160
170

**

* SUBROUTINE UX4EXT

%

I"

%*
*

* THIS SUBROUTINE COMPUTES THE VALUE OF U=X**4 AT THE SPECIFIED *
*

* NODAL POINTS FOR MAIN PROGRAM LINS.

dedededededevededededederedofededertddededesdedededestdrdededebatiedrde Ao dedededededesledtdededr el

SUBROUTINE UX4EXT

COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
: ELEN, ICORR(100,2) ,NEL,NSNP

DG 150 NN = 1,NSNP
UEXT(NN) = COORD(NN)#¥*4

CONTINUE

RETURN

END

98

SOLUTION OF U" = 12X**2 USING MIDPOINT LUMPED FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF
0. 000 0. 0000 0. 0000 0.0
0. 200 0.0016 0.0184 1050.3
0.400 0.0256 0. 0608 137.5
0. 600 0.1296 0. 1848 42.6
0. 800 0. 4096 0. 4864 18. 8
1. 000 1. 0000 1. 1000 10.0
1. 200 2.0736 2.1984 6.0
1. 400 3.8416 3.9928 3.9
1. 600 6.5536 6.7328 2.7
1. 800 10.4976 10. 7064 2.0
2.000 16. 0000 16. 2400 1.5

99

SOLUTION OF U" = 12X**2 USING 1/4 - 3/4 LUMPED FORCING FUNCTION

X~COORD U EXACT U FEM % DIFF
0. 000 0. 0000 0. 0000 0.0
0. 200 0. 0016 0. 0046 187.8
0. 400 0. 0256 0. 0296 15.7
0. 600 0.1296 0.1326 2.3
0. 800 0. 4096 0.4096 0.0
1. 000 1. 0000 0.9950 -0.5
1. 200 2.0736 2.0616 -0.6
1.400 3.8416 3.8206 -0.5
1. 600 6.5536 6.5216 -0.5
1.800 10.4976 10.4526 -0.4
2.000 16.0000 15.9400 -0.4

100

SOLUTION OF U" = 12X**2 USING CONSISTENT FORCING FUNCTION

X~COORD U EXACT U FEM % DIFF
0.000 0. 0000 0. 0000 0.0
0. 200 0.0016 0.0016 0.1
0. 400 0. 0256 0.0256 0.0
0. 600 0.1296 0. 1296 0.0
0. 800 0. 4096 0. 4096 0.0
1. 000 1. 0000 1. 0000 0.0
1. 200 2.0736 2.0736 0.0
1. 400 3. 8416 3.8416 0.0
1. 600 6.5536 6.5536 0.0
1. 800 10. 4976 10. 4976 0.0
2. 000 16. 0000 16. 0000 0.0

101

c sededededededdedodedededededededede dededededededededoedededededederedtdededededdedededededededededededrdedededeirrkederdednoko
C * SUBROUTINE OUTLIN ¥
C * %*
C % THIS SUBROUTINE COMPUTES THE PERCENT ERROR BETWEEN THE EXACT *
C * AND FEM VALUES OF U AND OUTPUTS THE APPROPRIATE INFORMATION *
c * FOR MAIN PROGRAMS LIN|, LIN2, AND LIN3. %*
C Fsbbskabiabbskairiastbatatsabi ik des e dedededededesdede oo ot dedrdedrdeartrdedeoedrddieoek
100 SUBROUTINE OUTLIN

110 COMMON A(100,100),FT(100),U(100),UGEXT(100),UDIF(100),COORD(100),
: ELEN, ICORR(100,2) ,NEL,NSNP

c COMPUTE PERCENT ERROR AT EACH NODAL POINT

120 DO 150 IK=2,NSNP

130 UDIF(IK)=100. *(U(IK)~-UEXT(IK))/UEXT(IK)
150 CONTINUE

160 UDIF(1)=U(1)-UEXT(1)

c OUTPUT RESULTS TO THE SCREEN AND TO A FILE

170 WRITE(6,180)

175 WRITE(30,180)

180 FORMAT(/,1X,'X-COORD',4X,'U EXACT',4X,'U FEM',6X,'% DIFF')
190 WRITE(6,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
195 WRITE(30,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
200 FORMAT(/,2X,F5.3,5X,F7.4,3X,F7.4,4X,F6.1)

230 RETURN

240 END

102

APPENDIX C. LINEARIZATION VECTORS FOR CONSTANT
LINEARIZATION TECHNIQUE

For this analysis, h(«’) in equation (3.6) is replaced by («')* and the element
linearization vector becomes

* l, 2
= [o(u")ae (C.1)
0
The three approximations of this integral outlined in 111.B.1 are now determined.
Midpoint Lumped Approximation

Replacing h(«’) in equation (3.7) with (&)’ yields

l

o [@)\
f=CL7¢—)£ (€2)

1/4 - 3/4 Lumped Approximation
Replacing A(u') in equation (3.8.d) with (u')’ yields

(e da)
f =

= . .\ (C3)
2 (% (y) + % (y;+ l)i)

103

Linear Approximation

Replacing h(u’) with («*)’ in equation (3.9.b) gives

. 2
((uj.)i<l “"i') + (uj+1)i(_1§:>> ag

L

é'ﬁ
l_le
&
L

¢
l—le

i3
le

. 2 * *
<(uj)3(1 - 'f:) + (1)i+ 1)'1(

4

6

: E 2 [] E L] 2
(4)i N ()it 1) ()i

12

* 2 = * E 2
(l‘j)i (“j)i(uj+l)i + (uj+l)i
12 6 4

104

£
L

62
_?—

€

)

« 2
+ (441);

(

¢
[

L]

2
))di(c.zz)

"
APPENDIX D. LINEARIZATION MATRICES FOR THE CLASSICAL
LINEARIZATION TECHNIQUE

For this analysis, A(x") in equation (3.10) is replaced by «' and the element
linearization matrix integral becomes

L1
f gg u df (D.1)
0
The two approximations of this integral outlined in I11.B.2 are now determined.

Midpoint Lumped Approximation

Replacing h(u’) in equation (3.11) with «" yields

- = l l
. =< (1)i + (45 1); >Ie Zl's ? (D.2)
6 3

Linear Approximation

Replacing h(«’) with «" in equation (3.12) gives

-B(uj‘)i + (uj.ﬂ)i (uj‘)i + (uj‘+l)i :l

@)+ () ()i 3

105

APPENDIX E. PROGRAM LISTINGS FOR CONSTANT

LINEARIZATION
c Fededrdrieiededelededededeicdeiridriededriede ek dedrioiededokdiokedeoinbddrdeloedede dofeieledodok e bt
C * PROGRAM NU2CAN *
c * THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL *
c * EQUATION: *
c * U" - Uk¥2 = 6 - 9X**4; UEXACT=3X**2 WITH VARIABLE DOMAIN *
c * TREATING THE U**2 TERM AS AN EXCITATION AND TAKING IT TO THE *
C * RIGHT SIDE OF THE EQUATION. ¥
c * THE USER SELECTS: *
c * 1) NUMBER OF ELEMENTS *
c * 2) SIZE OF DOMAIN *
c * 3) X AND U(X) AT THE LEFT BOUNDARY *
c * 4) U(X) OR U'(X) AT THE RIGHT BOUNDARY *
c * 5) ITERATION STRATEGY FOR DETERMINING U* *
c * 6) APPROXIMATION TECHNIQUE FOR THE EXCITATION INTEGRAL *
c G e L

110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),
: UEXT(100),UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,NEL,NSNP, ITYPE

115 CONV=, 0001

c READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC

c CALCULATE NUMBER OF NODAL POINTS

135 NSNP=NEL+1

c DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN=TLEN/FLOAT(NEL)

c ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
c EACH NODE

160 DO 169 IEL=1,NEL

162 ICORR(IEL,1)=IEL

163 ICORR(IEL,2)=IEL+1

165 COORD(IEL+1)=COORD(IEL) + ELEN

169 CONTINUE

c CALL SUBROUTINE NU2CAM TO CREATE A MATRIX AND ¥ VECTOR
170 CALL NU2CAM

c CALL SUBROUTINE NU2CAI TO PERFORM SOLUTION ITERATION

180 CALL NU2CAI(IET)

106

190

200
210

CALL SUBROUTINE U2EXTA TO COMPUTE EXACT SOLUTION U=3X¥*2
CALL U2EXTA
CALL SUBROUTINE OUTPUT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY

CALL OUTPUT(CPUSTAR, IET)
END

107

aaaaaoan

110

120

169

170
180
200
210

213
220

dededeiiedeRdedededodedekeiriokfededededededededefedededode dok dedededededededereede s dededrdedrde e e dedededeeek

* SUBROUTINE NU2CAM
*
* THIS SUBROUTINE COMPUTES THE A MATRIX AN’ F VECTOR FOR MAIN

* PROGRAM NU2CAN.
Fedededededeieieioieieieiekdeinioeiideiniolrdeieioioielokokdekdokdokdeinirioiindoiodedofefokdeieinideofrioniabdhok

* 3+ % %

SUBROUTINE NU2CAM
COMMON A(100,100),Fs$(100),FU(100),FT(100),U(100),U0LD(100),

: UEXT(100) ,UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,NEL,NSNP, ITYPE

DIMENSION AE(2,2), FS1E(2), FS2E(2)

IF (TLEN.LE.1.0) THEN
PRINT*, 'CHOOSE BOUNDARY FOR INITIAL GUESS:'
PRINT*,'1 = LEFT ESSENTIAL BOUNDARY CONDITION'
PRINT*,'2 = RIGHT ESSENTIAL BOUNDARY CONDITION'
PRINT*,’'3 = AVERAGE OF THE TWO ESSENTIAL BOUNDARY CONDITIONS'
READ(6,*) INITGS

ELSE
CONTINUE

ENDIF

DO 210 IZ = 1,NSNP

ZERO OUT STEADY FORCE VECTOR
FS(12) = 0.
DETERMINE INITIAL VALUE OF USTAR TO BEGIN THE ITERATION PROCESS

IF (INITGS.EQ.1) THEN
U(1Z)=ULBC
UOLD(1Z)=ULBC

ELSEIF (INITGS.EQ.2) THEN
U(IZ)=URBC
UOLD(IZ)=URBC

ELSEIF (INITGS.EQ.3) THEN
U(I2)=(ULBC+URBC)/2.
UOLD(IZ)=U(IZ)

ELSE
U(IZ)=SQRT(ABS(9.*COORD(IZ)**4 - 6.))
UOLD(IZ)=U(1Z)

ENDIF

ZERO OUT A MATRIX
DO 200 JZ = 1,NSNP
A(I1Z2,JZ) = 0.
CONTINUE
CONTINUE
ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR
ALPHA=0,

DO 375 IEL=1,NEL
AE(1,1)=1. /ELEN

108

230 AE(1,2)=(-1. /ELEN)

240 AE(2,1)=AE(1,2)

250 AE(2,2)=AE(1,1)

260 FS1E(1)=3.*ELEN

270 FS1E(2)=FS1E(1)

272 F1=(ALPHA**4)*ELEN/2.

274 F2=2. *(ALPHA**3)*(ELEN**2)/3.

276 F3=(ALPHA**2)#*(ELEN#*¥3) /2.

278 F4=ALPHA*(ELEN**4) /5.

280 F5=(ELEN**5)/30.

287 FS2E(1)=(-9.)*(F1 + F2 + F3 + F4 + F5)
290 FS2E(2)=(-9)*(F1 + 2.%F2 + 3.*F3 + 4.%*F4 + 5. %F5)
300 DO 370 11=1,2

310 DO 350 JJ=1,2

320 IN=ICORR(IEL,II)

330 JN=ICORR(IEL,JJ)

340 A(IN,JIN)=A(IN,JN) - AE(II,JJ)

350 CONTINUE

360 FSCIN)=FS1E(II) + FS2E(II) + FS(IN)
370 CONTINUE

372 ALPHA=ALPHA + ELEN
375 CONTINUE

420 RETURN

430 END

109

oXoNoNoNoN o]

100
102

104

105
106
107
109

116
117
118
119
120

121

122

123
124

125
126
127
128
132
138

140
145
146
147

dedederededededetededededodededeirdedededededede et dededede dedab e b de de e dededede dedrdede e dedeededede e ook

* SUBROUTINE NU2CAI *
-

* THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR *
* MAIN PROGRAM NU2CAN. *

Fedederdedederedereredereeskdedevededereddedededededededededrdedrdevededede Rl Rt e ek et ok ook

SUBROUTINE NU2CAI(IET)
COMMON A(100,100),FS(100),FU(100),FT(100),0(100),UOLD(100),

: UEXT(100),UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR 100,2) ,NEL,NSNP, ITYPE

DIMENSION WKAREA(40600), DIF(100), FUE(2), USTAR(100)
SELECT METHOD OF DETERMINING USTAR

PRINT*, ' SELECT METHOD OF U%* DETERMINATION.'

PRINT*,'1: U*x = U'

PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U’
READ(6,*) METHU

SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR
PRINT*, 'SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTJR.'
PRINT*,'1: MIDPOINT APPROXIMATION'

PRINT*,'2: 1/4 - 3/4 APPROXIMATION'

PRINT*,'3: LINEAR'

READ(6,%*) METHFU

CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS
CALL SETIME

BEGIN ITERATION PROCESS

DO 450 ITER=1,200

RESET VALUE OF UNSTEADY F VECTOR TO ZERO

DO 138 IU=1,NSNP
FU(IU)=0.

DETERMINE VALUE OF U* AT EACH NODE

IF (METHU.EQ.1) THEN
USTAR(IU)=U(IU)
ELSEIF (METHU.EQ.2) THEN
USTAR(IU)=(U(IU)+UOLD(IU))/2.
ENDIF
CONTINUE

DETERMINE UNSTEADY FORCE VECTOR
DO 210 IEL=1,NEL
IF (METHFU.EQ. 1) THEN

FUE(1)=(ELEN/2.)*((USTAR(IEL)+USTAR(IEL+1))/2.)¥**2
FUE(2)=FUE(1)

110

149 ELSEIF (METHFU.EQ.2) THEN

151 FUE(1)=(ELEN/2.)*(3.*USTAR(IEL)/4. + USTAR(IEL+1)/4.)%*2

152 FUE(2)=(ELEN/2.)*(USTAR(IEL)/&4. + 3.*USTAR(IEL+1)/4&4.)*¥*2

153 ELSE

154 FUE(1)=ELEN*(USTAR(IEL)**2/4. +USTAR(IEL)*USTAR(IEL+1)/6.
: + USTAR(IEL+1)*¥%2/12.)

155 FUE(2)=ELEN*(USTAR(IEL)*¥*2/12. + USTAR(IEL)*USTAR(IEL+1)
: /6. + USTAR(IEL+1)*¥2/4.)

156 ENDIF

170 DO 200 II=1,2

180 IN=ICORR(IEL,II)

190 FUCIN)=FUE(II) + FU(IN)
200 CONTINUE

210 CONTINUE

c DETERMINE TOTAL FORCE VECTOR

220 DO 240 NP=1,NSNP

230 FT(NP)=FS(NP)+FU(NP)
235 UOLD(NP)=U(NP)

240 CONTINUE

c IMPOSE BOUNDARY CONDITIONS

241 A(1,1)=1.
242 A(1,2)=0.

243 FT(1)=ULBC

244 IF (ITYPE.EQ.1) THEN
245 A(NSNP,NSNP-1)=0.
246 A(NSNP,NSNP)=1.
247 FT(NSNP)=URBC

248 ELSE

249 FT(NSNP)=FT(NSNP) -URBC*TLEN
250 ENDIF

255 M=1

260 IDGT=3

270 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS

280 CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA, IER)
290 DO 310 NEW=1,NSNP

300 U(NEW)=FT(NEW)

C WRITE(*,*) 'UNEW=',U(NEW)

c TEST FOR CONVERGENCE

306 DIF(NEW)=ABS(U(NEW) -UOLD(NEW))
310 CONTINUE

320 DIFMAX=DIF(1)

325 NMAX=1

330 DO 390 1J=1,NEL

340 IF (DIF(IJ+1).GE.DIF(I1J)) THEN
350 DIFMAX=DIF(IJ+1)
355 NMAX=1J+1

360 ELSE

111

506

CONTINUE
ENDIF e
CONTINUE
IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
GO TO 451
ELSE
CONTINUE
ENDIF
CONTINUE
CONTINUE

CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS
CALL GETIME(IET)
OUTPUT HEADER INFORMATION

WRITE(6,464)
WRITE(30,464)
FORMAT(1X, 'EQUATION: U" - Uk*2 = 6 - 9X¥*4')
IF (ITYPE.EQ.1) THEN

WRITE(6,468) COORD(1),ULBC,COORD(NSNP),URBC

WRITE(30,468) COORD(1),ULBC,COORD(NSNP),URBC

FORMAT(1X,'B.C.: U(',F2.0,')=',F2.0,'; U(',F3.0,')=',F4.0,/)
ELSE

WRITE(6,472) COORD(1),ULBC,COORD(NSNP),URBC

WRITE(30,472) COORD(1),ULBC,COORD(NSNP),URBC

FORMAT(1X,'B.C.: U(',F2.0,')=',F2.0,';DU/DX(',F3.0,"')="',F4.0,/)
ENDIF
IF (METHU.EQ. 1) THEN

WRITE(6,478)

WRITE(30,478)

FORMAT(1X, ' ITERATION METHOD: U*=U',/)
ELSE

WRITE(6,482)

WRITE(30,482)
. FORMAT(1X, ' ITERATION METHOD: U*=(U+UOLD)/2',/)

NDIF
IF (METHFU.EQ.1) THEN

WRITE(6,491)

WRITE(30,491)

FORMAT(1X, '"METHOD OF EXCITATION INTEGRAL EVALUATION: MIDPOINT',/)
ELSEIF (METHFU.EQ.2) THEN

WRITE(6,495)

WRITE(30,495)

FORMAT(1X, "METHOD OF EXCITATION INTEGRAL EVALUATION: 1/4-3/4',/)
ELSE

WRITE(6,499)

WRITE(30,499)

FORMAT(1X, '"METHOD OF EXCITATION INTEGRAL EVALUATION: LINEAR',/)
ENDIF
IF (ITER.GE.200) THEN

WRITE(6,505)

WRITE(30,505)

FORMAT(1X, ' CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
ELSEIF (ABS(U(NMAX)).GT. (10.**%20). OR. ABS(U(NSNP-1)). GT.

112

: (10.%%20)) THEN
507 WRITE(6,509)
508 WRITE(30,509)
509 FORMAT(1X, ' SOLUTION PROCESS DIVERGES. ')
510 ELSE
511 WRITE(6,520) ITER,NEL
515 WRITE(30,520) ITER,NEL

520 FORMAT(1X, ' CONVERGENCE OBTAINED AFTER ',I3,' ITERATIONS USING ',
:I13,' ELEMENTS.',/)

525 ENDIF

530 RETURN

540 END

113

Federederededrdedededk etk Atttk bbbtk de st dbe st de b iede e desdededestoe

* SUBROUTINE U2EXTA
*
* THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=3X**2, FOR

* MAIN PROGRAM NU2CA AT THE SPECIFIED NODAL POINTS.
Fedesededederiedededrieiridedrieddeieiedeiieiriiionirioinbioionriokanieinbieksoedede drdeleiodrieieodedeioes

* * % %

SUBROUTINE U2EXTA
COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),

: UEXT(100) ,UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,NEL,NSNP, ITYPE

DO 150 NN = 1,NSNP
UEXT(NN) = 3. *COORD(NN)#**2
CONTINUE
RETURN
END

114

%

PROGRAM NU2CBN
THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL
EQUATION:

U" + U**2 = 60X + 100X*%6; UEXACT=10X**3 WITH VARIABLE
DOMAIN, TREATING THE U**2 TERM AS AN EXCITATION AND TAKING IT
TO THE RIGHT SIDE OF THE EQUATION. THE USER SELECTS:

1) NUMBER OF ELEMENTS

2) SIZE OF DOMAIN

3) X AND U(X) AT THE LEFT BOUNDARY

4) U(X) OR U'(X) AT THE RIGHT BOUNDARY
5) ITERATION STRATEGY FOR DETERMINING U*

6) APPROXIMATION TECHNIQUE FOR THE EXCITATION INTEGRAL
Fedeiehecicieleieioiicirioioieieicoiivicieioiveleieieoniooioinoioeioinieoloionnoinoododedordedeiedeioedok

LI I R R R R I
LR E B EEEERE SR

anoaaaaoaoaaaaonn

110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),U0LD(100),
: UEXT(100) ,UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,NEL,NSNP, ITYPE

115 CONV=, 0001

c READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC

c CALCULATE NUMBER OF NODAL POINTS

135 NSNP=NEL+1

c DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN=TLEN/FLOAT(NEL)

c ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
c EACH NODE

160 DO 169 I1EL=1,NEL

162 ICORR(IEL,1)=IEL

163 ICORR(IEL,2)=IEL+1

164 COORD(IEL+1)=COORD(IEL)+ELEN

169 CONTINUE

c CALL SUBROUTINE NU2CBM TO CREATE A MATRIX AND F VECTOR
170 CALL NU2CBM

c CALL SUBROUTINE NU2CBI TO PERFORM SOLUTION ITERATION
180 CALL NU2CBI(IET)

c CALL SUBROUTINE U2EXTB TO COMPUTE EXACT SOLUTION U=10X**3
190 CALL U2EXTB

c CALL SUBROUTINE OUTPUT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY

115

200 CALL OUTPUT(CPUSTAR,IET)
210 END

116

c dededcdedededeiedeiededctodeiededeliedeieiodododekdedededcdedod dededdededeickedodedrdeededoiededeiededededededededededeedeok
C * SUBROUTINE NU2CBM *
C %* *
C * THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *
C * PROGRAM NU2CBN. *
c dededededevededededesrieddrieveieieiriedeiriederieiedrdedeiodedeiededrt it dedeeteded et e dede e dede e deaieole

100 SUBROUTINE NU2CBM
110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),
: UEXT(100),UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,NEL ,NSNP, ITYPE
120 DIMENSION AE(2,2), FS1E(2), FS2E(2)
122 IF (TLEN.LT.1.0) THEN
123 PRINT*, 'CHOOSE BOUNDARY FOR INITIAL GUESS:'
124 PRINT*,'1 = LEFT ESSENTIAL BOUNDARY CONDITION'
125 PRINT*,'2 = RIGHT ESSENTIAL BOUNDARY CONDITION'
126 PRINT*,'3 = AVERAGE OF THE TWO ESSENTIAL BOUNDARY CONDITIONS'

127 READ(6,*) INITGS

128 ELSE

129 CONTINUE

130 ENDIF

140 DO 210 IZ = 1,NSNP

c ZERO OUT STEADY FORCE VECTOR
150 FS(1Z) = 0.

c DETERMINE INITIAL VALUE OF USTAR TO BEGIN THE ITERATION PROCESS

157 IF (INITGS.EQ.1) THEN

158 U(IZ)=ULBC

159 UOLD(IZ)=ULBC

160 ELSEIF (INITGS.EQ.2) THEN
161 U(IZ)=URBC

162 UOLD(IZ)=URBC

163 ELSEIF (INITGS.EQ.3) THEN
164 U(IZ)=(ULBC+URBC)/2.
165 UOLD(1Z)=U(12)

166 ELSE

167 U(IZ)=SQRT(60.*COORD(IZ) + 100.*COORD(IZ)**6)
168 UOLD(I1Z)=U(I1Z)

169 ENDIF

c ZERO OUT A MATRIX

170 DO 200 JZ = 1,NSNP
175 A(I1Z,JZ) = 0.
200 CONTINUE

210 CONTINUE
c ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR
213 ALPHA=0.

215 DO 375 IEL=1,NEL
220 AE(1,1)=1. /ELEN

117

230 AE(1,2)=(-1. /ELEN)

240 AE(2,1)=AE(1,2)

250 AE(2,2)=AE(1,1)

260 FS1E(1)=30. *ALPHA*ELEN + 10.*ELEN¥**2
270 FS1E(2)=30.*ALPHA*ELEN + 20.*ELEN¥*2
272 F1=50. *(ALPHA**6)*ELEN

274 F2=100. *(ALPHA**5)%*(ELEN**¥2)

276 F3=125. *(ALPHA%*%*4)*(ELEN**3)

278 F4=100. *(ALPHA%%*3)%*(ELEN*¥*4)

280 F5=50. *(ALPHA**2)*(ELEN*%*5)

281 F6=100. *ALPHA*(ELEN*¥*6)/7.

282 F7=25.*%(ELEN**7)/16.

287 FS2E(1)=F1 + F2 + F3 + F4 + F5 + F6 + F7

290 FS2E(2)=F1 + 2.%F2 + 3.%F3 + 4. *F4 + 5.%F5 + 6.%F6 + 7T*F7
300 DO 370 II=1,2

310 DO 350 JJ=1,2

320 IN=ICORR(IEL,II)

330 JN=ICORR(IEL,JJ)

340 A(IN,JIN)=A(IN,JN) - AE(II,JJ)

350 CONTINUE

360 FS(IN)=FS1E(II) + FS2E(II) + FS(IN)

370 CONTINUE

372 ALPHA=ALPHA + ELEN
375 CONTINUE

420 RETURN

430 END

118

c Sededededieeieieiededie il oiedededdedelodoodedodeoiciededeldoieioddodedodeooodok o oo
c * SUBROUTINE NU2CBI] w
C * it ¥
c * THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR ¥
C * MAIN PROGRAM NU2CBN. *
C dedededededk et el dediieddedededeodedelededdeiededededoddelefdeioddiedeoedoio e

100 SUBROUTINE NU2CBI(IET)

102 COMMON A(100,100),Fs(100),FU(100),FT(100),U(100),U0LD(100),
: UEXT(100),UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,NEL,NSNP, ITYPE

104 DIMENSION WKAREA(40600), DIF(100), FUE(2), USTAR(100)

c SELECT METHOD OF DETERMINING USTAR

105 PRINT*,'SELECT METHOD OF U* DETERMINATION.'

106 PRINT*,'1l: U*x = U'

107 PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'
109 READ(6,*) METHU

c SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

116 PRINT*,'SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR.'
117 PRINT*,'1: MIDPOINT APPROXIMATION'

118 PRINT*,'2: 1/4 - 3/4 APPROXIMATION'

119 PRINT*,'3: CONSISTENT'

120 READ(6,*) METHFU

c CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS
121 CALL SETIME

o BEGIN ITERATION PROCESS

122 DO 450 ITER=1,200

c RESET VALUE OF UNSTEADY F VECTOR TO ZERO

123 DO 138 IU=1,NSNP
124 FU(IU)=0.

C DETERMINE VALUE OF U* AT EACH NODE

125 IF (METHU.EQ. 1) THEN

126 USTAR(IU)=U(IU)

127 ELSE

128 USTAR(IU)=(U(IU)+UOLD(IU))/2.
132 ENDIF

138 CONTINUE

c DETERMINE UNSTEADY FORCE VECTOR
140 DO 210 IEL=1,NEL

145 IF (METHFU.EQ. 1) THEN

146 FUE(1)=(ELEN/2.)*((USTAR(IEL)+USTAR(IEL+1))/2.)**2
147 FUE(2)=FUE(1)

119

149 ELSEIF (METHFU.EQ.2) THEN

151 FUE(1)=(ELEN/2.)*(3. *USTAR(IEL)/4. + USTAR(IEL+1)/4.)¥%2

152 FUE(2)=(ELEN/2.)*(USTAR(IEL)/4. + 3.*USTAR(IEL+1)/4.)%*%2

153 ELSE

154 FUE(1)=ELEN*(USTAR(IEL)**2/4. +USTAR(IEL)*USTAR(IEL+1)/6.
: + USTAR(IEL+1)*¥2/12.)

155 FUE(2)=ELEN*(USTAR(IEL)**2/12. + USTAR(IEL)*USTAR(IEL+1)/6.
: + USTAR(IEL+1)*¥%2/4,)

156 ENDIF

170 DO 200 II=1,2

180 IN=ICORR(IEL,II)

190 FUCIN)=FUE(II) + FU(IN)

200 CONTINUE

210 CONTINUE
c DETERMINE TOTAL FORCE VECTOR

220 DO 240 NP=1,NSNP

230 FT(NP)=FS(NP)-FU(NP)
235 UOLD(NP)=U(NP)

240 CONTINUE

c IMPOSE BOUNDARY CONDITIONS
241 A(1,1)=1.

242 A(1,2)=0.
243 FT(1)=ULBC

244 IF (ITYPE.EQ.1) THEN

245 A(NSNP,NSNP-1)=0.

246 A(NSNP,NSNP)=1.

247 FT(NSNP)=URBC

248 ELSE

249 FT(NSNP)=FT(NSNP) -URBC
250 ENDIF

255 M=1

260 IDGT=3

270 IQ=100

c CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS

280 CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
290 DO 310 NEW=1,NSNP

300 U(NEW)=FT(NEW)

c WRITE(*,*) 'UNEW=',6U(NEW)

c TEST FOR CONVERGENCE
306 DIF(NEW)=ABS(U(NEW)-UOLD(NEW))

310 CONTINUE
320 DIFMAX=DIF(1)

325 NMAX=1

330 DO 390 1J=1,NEL

340 IF (DIF(I1J+1).GE.DIF(1IJ)) THEN
350 DIFMAX=DIF(IJ+1)

355 =1J+1

360 ELSE

120

370 CONTINUE

380 ENDIF

390 CONTINUE

405 IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
410 GO TO 460

420 ELSE

430 CONTINUE

440 ENDIF
450 CONTINUE
460 CONTINUE

C CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS
461 CALL GETIME(IET)
c OUTPUT HEADER INFORMATION

462 WRITE(6,464)

463 WRITE(30,464)

464 FORMAT(1X,'EQUATION: U" + U#**2 = 60X + 100X**6')

465 IF (ITYPE.EQ.1) THEN

466 WRITE(6,468) COORD(1),ULBC,COORD(NSNP),URBC

467 WRITE(30,468) COORD(1),ULBC,COORD(NSNP),URBC

468 FORMAT(1X,'B.C.: U(',F2.0,')=',F3.0,"; U(',F2.0,')=",F4.0,/)
469 ELSE

470 WRITE(6,472) COORD(1),ULBC,COORD(NSNP),URBC

471 WRITE(30,472) COORD(1),ULBC,COORD(NSNP),URBC

472 FORMAT(1X,'B.C.: U(',F2.0,')=',F3.0,"';DU/DX(',F2.0,"')=',F4.0,/)
473 ENDIF

475 IF (METHU.EQ.1) THEN

476 WRITE(6,478)

477 WRITE(30,478)

478 FORMAT(1X, ' ITERATION METHOD: U*=U',/)

479 ELSE

480 WRITE(6,482)

481 WRITE(30,482)

482 FORMAT(1X, ' ITERATION METHOD: U*=(U+UOLD)/2',/)

487 ENDIF

488 IF (METHFU.EQ.1) THEN

489 WRITE(6,491)

490 WRITE(30,491)

491 FORMAT(1X, '"METHOD OF EXCITATION INTEGRAL EVALUATION: MIDPOINT',/)
492 ELSEIF (METHFU.EQ.2) THEN

493 WRITE(6,495)

494 WRITE(30,495)

495 FORMAT(1X, '"METHOD OF EXCITATION INTEGRAL EVALUATION: 1/4-3/4',/)
496 ELSE

497 WRITE(6,499)

498 WRITE(30,499)

499 FORMAT(1X, '"METHOD OF EXCITATION INTEGRAL EVALUATION: LINEAR',/)
500 ENDIF

502 IF (ITER.GE.200) THEN

503 WRITE(6,505)

504 WRITE(30,505)

505 FORMAT(1X, ' CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
506 ELSEIF (ABS(U(NMAX)).GT. (10.**20), OR. ABS(U(NSNP-1)).GT.

121

:(10.%+20)) THEN
507 WRITE(6,509)
508 WRITE(30,509)
509 FORMAT(1X, ' SOLUTION PROCESS DIVERGES. ')

510 ELSE
511 WRITE(6,520) ITER,NEL
515 WRITE(30,520) ITER,NEL

'

520 FORMAT(1X, 'CONVERGENCE OBTAINED AFTER ',I3,' ITERATIONS USING ',
:13,' ELEMENTS.',/)

525 ENDIF
530 RETURN
540 END

122

c Fedededededededrdrderededede de ke dedede dede e de A sl Fe Aok A deee ke fe sk Ao e de e e de e dede
c * SUBROUTINE U2EXTB *
C %* *
C * THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=10X**3, *
C * FOR MAIN PROGRAM NU2CBN AT THE SPECIFIED NODAL POINTS. %*
c Fededederedededevedrdededededeiededeirat ek edededederdeioirdeatrdedede e A dedt e dede s dedede dede e dedededk

100 SUBROUTINE U2EXTB

110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),U0LD(100),
: UEXT(100),UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,NEL,NSNP, ITYPE

130 DO 150 NN = 1,NSNP

140 UEXT(NN) = 10.*COORD(NN)¥**3
150 CONTINUE

160 RETURN

170 END

123

aaoaaaan

100
110

115

120
130
140
150
160

164
165
166
169

170
175
180
190
195
200

205
210
215
220
230
240

Fedrdedriek kR R dedededededrdriekeededededededededede e dedede e deriniedede dededededededede s de e b et

* SUBROUTINE OUTPUT *
* THIS SUBROUTINE COMPUTES THE PER CENT ERROR BETWEEN THE EXACi *
* AND FEM SOLUTIONS, CPU* FOR THE ITERATION PROCESS, AND PRINTS *

* QUT ALL DATA IN TABULAR FORM FOR PROGRAMS NU2CAN AND NU2CBN *
dedededededededeeded doddedriededededekdedeirieiofed doieidedeiedede Ttk iefdedeieioioedodedeiededed doioieiok

SUBROUTINE OUTPUT(CPUSTAR,IET)
COMMON A(100,100),FS(100),FU(100),FT(100),U(100},U0LD(100),

: UEXT(100),UDIF(100),COORD(100) ,ELEN,CONV,ELTIME ,ULBC,URBC,
: TLEN, ICORR(100,2) ,NEL,NSNP, ITYPE

SUMDIF=0.

CALCULATE PER CENT ERROR AT EACH NODE AND SUM THE ABSOLUTE VALUE
OF ALL THE ERRORS

DO 150 IK=2,NSNP
UDIF(IK)=100. *(U(IK)~UEXT(IK))/UEXT(IK)
SUMDIF=SUMDIF + ABS(UDIF(IK))

CONTINUE

UDIF(1)=U(1)-UEXT(1)

COMPUTE THE ELAPSED TIME OF THE ITERATION PROCESS

ELTIME=IET*. 000026

WRITE(6,169) ELTIME

WRITE(30,169)ELTIME

FORMAT(1X, 'ELAPSED TIME FOR THE ITERATION PROCESS IS ',F9.4,

:' SECONDS.')

OUTPUT DATA IN TABULAR FORMAT

WRITE(6,180)

WRITE(30,180)

FORMAT(/,1X,'X-COORD',3X,'U EXACT',3X,'U FEM',4X,'% DIFF')
WRITE(6,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
WRITE(30,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
FORMAT(/,2X,F5.3,5X,F7.4,3X,F7.4,4X,F5.1)

CALCULATE CPU* FOR THE ITERATION PROCESS

CPUSTAR=ELTIME*SUMDIF/NSNP

WRITE(6,220) CPUSTAR

WRITE(SO,ZZO? CPUSTAR .
FORMAT(/,1X, 'CPU* FOR THE ITERATION PROCESS IS ',F9.4,' SECONDS.')
RETURN

END

124

APPENDIX F. PROGRAM LISTINGS FOR CLASSICAL
LINEARIZATION

1
1
%
3
i
i

PROGRAM NU2KA

THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL
EQUATION:

U" - Us*2 = 6 - 9X¥%4; UEXACT=3X**2 WITH VARIABLE DOMAIN *
BY LINEARIZING THE U#**2 TERM AS USTAR*U AND KEEPING IT ON THE *
LEFT SIDE OF THE EQUATION. THE USER SELECTS:

1) NUMBER OF ELEMENTS

2) SIZE OF DOMAIN

3) X AND U(X) AT THE LEFT BOUNDARY

4) U(X) OR U'(X) AT THE RIGHT BOUNDARY

5) ITERATION STRATEGY FOR DETERMINING U*

6) APPROXIMATION TECHNIQUE FOR THE EXCITATION INTEGRAL
B

* % %

L I B IR R B B R I

Qaoaooaoaooaaoaoaan
* % % % *

110 COMMON A(100,100),Fs(100),B(100,100),C(100,100),U(100),UOLD(100),
: UEXT(100) ,UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2),ITYPE,NEL,NSNP

115 CONV=, 0001

c READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC

c CALCULATE NUMBER OF NODAL POINTS

135 NSNP=NEL+1

c DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN=TLEN/FLOAT(NEL)

c ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
c EACH NODE

160 DO 169 IEL=1,NEL

162 ICORR(IEL,1)=IEL

163 ICORR(IEL, 2)=IEL+1

164 COORD(IEL+1)=COORD(IEL)+ELEN

169 CONTINUE

c CALL SUBROUTINE NU2CAM TO CREATE A MATRIX AND F VECTOR
170 CALL NU2KAM

c CALL SUBROUTINE NU2CAI TO PERFORM SOLUTION ITERATION

180 CALL NU2KAI(IET)

125

190

200
210

CALL SUBROUTINE U2EXTA TO COMPUTE EXACT SOLUTION U=3X##2
CALL CLEXTA il
CALL SUBROUTINE OUTPUT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY

CALL CLOTPT(CPUSTAR, IET)
END

126

aoQoan

100

120

210

213
215
220

dededededeiove etk dededededesedereatdedrrddrk e dertrtrire v de dede el drdededr e A e ekt et dde e e e

* SUBROUTINE NU2KAM
*
* THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN

* PROGRAM NUZKA.
Fedederriedededededriniieieiikdedeiiirdrndrieiriod ekttt dedrdrirbedeieieiorniniinte

* + % *

SUBROUTINE NUZKAM
COMMON A(10C,100),FS(100),B(100,100),C(100,100),U(100),U0LD(100),

: UEXT(100),UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,ITYPE,NEL,NSNP

DIMENSION AE(2,2), FS1E(2), FS2E(2)

IF (TLEN. LE 1.0) THEN
PRINT*, CHOOSE BOUNDARY FOR INITIAL GUESS:
PRINT*,'1l = LEFT ESSENTIAL BOUNDARY CONDITION'

PRINT*, 2 = RIGHT ESSENTIAL BOUNDARY CONDITION'
PRINT*,'3 = AVERAGE OF THE TWO ESSENTIAL BOUNDARY CONDITIONS'
READ(6,*) INITGS
ELSE
CONTINUE
ENDIF

DO 210 IZ = 1,NSNP

ZERO OUT STEADY FORCE VECTOR
FS(1Z) =

DETERMINE INITIAL VALUE OF USTAR TO BEGIN THE ITERATION PROCESS

IF (INITGS.EQ.1) THEN
U(IZ)=ULBC
UOLD(IZ)=U(12)

ELSEIF (INITGS.EQ.2) THEN
U(I2)=URBC
UOLD({ IZ)=U(I2)

ELSEIF (INITGS.EQ.3) THEN
U(IZ)=(ULBC+URBC)/2.
UOLD{ 1Z2)=U(IZ)

ELSE
U(IZ) = SQRT(ABS(9.*COORD(IZ)**4 - 6.))
UOLD(IZ) = U(IZ)

ENDIF

ZERO OUT ALL MATRICES
DO 200 JZ = 1,NSNP

A(12,J2) = 0
B(1Z, JZ) =

ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR
ALPHA=0.

DO 375 IEL=1,NEL
AE(1,1)=1. /ELEN

127

AE(1,2)=(-1. /ELEN)
AE(2,1)=AE(1,2)
AE(2,2)=AE(1,1)
FS1E(1)=3. *ELEN
FS1E(2)=FS1E(1)
F1=(ALPHA®*4)*ELEN/2.
F2=2. *(ALPHA%¥3)%(ELEN**2) /3.
F3=(ALPHA*¥2)*(ELEN**3)/2.
F4=ALPHA*(ELEN**4) /5.
F5=(ELEN**5) /30.
FS2E(1)=(-9.)*(F1 + F2 + F3 + F4 + F5)
FS2E(2)=(-9)*(F1 + 2.%F2 + 3.*F3 + &4 *F4 + 5.%F5)
DO 370 II=1,2
DO 350 JJ=1,2
IN=ICORR(IEL,II)
JN=ICORR(IEL,JJ)
ACIN,JN)=ACIN,JN) - AE(II,JJ)
CONTINUE
FS(IN)=FS1E(II) + FS2E(II) + FSCIN)
CONTINUE
ALPHA=ALPHA + ELEN
CONTINUE
RETURN
END

128

aaaaoan

138

140
145
146
147
148
149
150
151
152

Fedrderededededrdededrdedeabe gl dederdeddedeied e gk redideiededeiekrfeiokdeioioidedeiokoriokedoriok
SUBROUTINE NU2KAI

* % %

IS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR

IN PROGRAM NUZ2KA.
Jedeiedeleiedeiedeieiieirioiokedeirivlefeioioeiviofoioidrieirioiokdoledooioioioiedeioiokede

* %+ % %

TH
MA

SUBROUTINE NU2KAI(IET)
COMMON A(100,100),Fs(100),B(100,100),C(100,100),U(100),UOLD(100),

: UEXT(100),UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,ITYPE ,NEL,NSNP

DIMENSION WKAREA(40600), DIF(100), BE(2,2), USTAR(100), FT(100)
SELECT METHOD OF DETERMINING USTAR

PRINTY, 'SELECT METHOD OF U* DETERMINATION.'

PRINT*,'1: U* = '

PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'
READ(6,%) METHU

SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

PRINT*, 'SELECT METHOD OF DETERMINING UNSTEADY B MATRIX.'
PRINT*,'1: MIDPOINT APPROXIMATION FOR U OVER THE ELEMENT.'
PRINT*,'2: U LINEARIZED OVER THE LENGTH OF THE ELEMENT.'
READ(6,*) METHBM

CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS
CALL SETIME

BEGIN ITERATION PROCESS

DO 450 ITER=1,200

DETERMINE VALUE OF U* AT EACH NODE

DO 138 IU=1,NSNP
IF (METHU.EQ. 1) THEN
USTAR(IU)=U(IU)
ELSE
USTAR(IU)=(U(IU)+UOLD(1IU))/2.
ENDIF
CONTINUE

DETERMINE UNSTEADY ELEMENT B MATRIX

DO 210 IEL=1,NEL

IF (METHBM.EQ. 1) THEN
BE(1,1)=(ELEN/6.)*(USTAR(IEL)+USTAR(IEL+1))
BE(1,2)=(ELEN/12.)*(USTAR(IEL)+USTAR(IEL+1))
BE(2,1)=BE(1,2)
BE(2,2)=BE(1,1)

ELSE
BE(1,1)=(ELEN/12.)#*(3.*USTAR(IEL) + USTAR(IEL+1))
BE(1,2)=(ELEN/12.)*(USTAR(IEL) + USTAR(IEL+1))

129

306
310
320
325
330

BE(2,1)=BE(1,2)
BE(2,2)=(ELEN/12.)*(USTAR(IEL) + 3.*USTAR(IEL+1))
ENDIF
DO 200 1I=1,2
DO 195 JJ=1,2
IN=ICORR(IEL,II)
JN=ICORR(IEL,JJ)
B(IN,JN)=BE(II,JJ) + B(IN,JN)
CONTINUE
CONTINUE
CONTINUE

DETERMINE TOTAL SYSTEM MATRIX

DO 240 IP=1,NSNP
DO 232 JP=1,NSNP
C(IP,JP)=A(IP,JP)-B(IP,JP)

RESET B MATRIX TO ZERO AND LET UOLD=U AND FT=FS

B(IP,JP)=0.
CONTINUE
UOLD(IP)=U(IP)
FT(IP)=FS(IP)

CONTINUE

IMPOSE BOUNDARY CONDITIONS

C(1,1)=1.

C(1,2)=0.

FT(1)=ULBC

IF (ITYPE.EQ.1) THEN
C(NSNP,NSNP-1)=0.
C(NSNP,NSNP)=1.
FT(NSNP)=URBC

ELSE
FT(NSNP)=FT(NSNP) -URBC

ENDIF

M=1

IDGT=3

Ig=100

CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC

CALL LEQT2F(C,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
DO 310 NEW=1,NSNP

U(NEW)=FT(NEW)

WRITE(*,*) 'UNEW=',6U(NEW)

TEST FOR CONVERGENCE

DIF(NEW)=ABS(U(NEW) -UOLD(NEW))
CONTINUE
DIFMAX=DIF(1)
NMAX=1
DO 390 IJ=1,NEL

130

EQUATIONS

IF (DIF(IJ+1).GE.DIF(1J)) THEN
DIFMAX=DIF(IJ+1)
NMAX=IJ+1
ELSE
CONTINUE
ENDIF
CONTINUE
IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
GO TO 460

CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS
CALL GETIME(IET)
OUTPUT HEADER INFORMATION

WRITE(6,464)
WRITE(30,464)
FORMAT(1X,'EQUATION: U" - U#¥2 = 6 - 9X*%4')
IF (ITYPE.EQ.1) THEN
WRITE(6,468) COORD(1),ULBC,COORD(NSNP),URBC
WRITE(30,468) COORD(1),ULBC,COORD(NSNP),URBC
FORMAT(1X,'B.C.: U(',F2.0,')=',F2.0,'; U(',F2.0,"')=',F4.0,/)
ELSE
WRITE(6,472) COORD(1),ULBC,COORD(NSNP),URBC
WRITE(30,472) COORD(1),ULBC,COORD(NSNP),URBC
FORMAT(1X,'B.C.: U(',F2.0,')=',F2.0,';DU/DX(',F2.0,')=',F4.0,/)
ENDIF
IF (METHU.EQ. 1) THEN
WRITE(6,478)
WRITE(30,478)
FORMAT(1X,' ITERATION METHOD: U*=U',/)
ELSE
WRITE(6,482)
WRITE(30,482)
FORMAT(1X, ' ITERATION METHOD: U*=(U+UOLD)/2',/)
ENDIF
IF (METHBM.EQ.1) THEN
WRITE(6,491)
WRITE(30,491)
FORMAT(1X, '"METHOD OF B MATRIX INTEGRAL EVALUATION: MIDPOINT',/)
ELSE
WRITE(6,499)
WRITE(30,499)
FORMAT(1X, '"METHOD OF B MATRIX INTEGRAL EVALUATION: LINEAR',/)
ENDIF
IF (ITER.GE.200) THEN
WRITE(6,505)
WRITE(30,505)
FORMAT(1X, ' CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
ELSEIF (ABS(U(NMAX)).GT. (10.%**20). OR. ABS(U(NSNP-1)).GT.

131

:(10.%%20)) THEN

WRITE(6,509)
WRITE(30,509)
FORMAT(1X, ' SOLUTION PROCESS DIVERGES.')
ELSE
WRITE(6,520) ITER,NEL
WRITE(30,520) ITER,NEL
FORMAT(1X, 'CONVERGENCE OBTAINED AFTER ',I3,' ITERATIONS USING

:13,"' ELEMENTS.',/)

ENDIF
RETURN
END

132

s

SUBROUTINE CLEXTA

IS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=3X**2, FOR

TH
MAIN PROGRAM NU2KA AT THE SPECIFIED NODAL POINTS.
Federdeieiekirdeiedrieieindrieioiroieirrieioriokdoiriokinkdoirrinieddoiorioioioriokdorinkoredokodeoioroio

SUBROUTINE CLEXTA
COMMON A(100,100),Fs(100),B(100,100),C(100,100),U(100),UOLD(100),

: UEXT(100),UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2),ITYPE,NEL,NSNP

DO 150 NN = 1,NSNP
UEXT(NN) = 3.*COORD(NN)#*2
CONTINUE
RETURN
END

133

1 J
|
|
|

PROGRAM NU2KB
THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL
EQUATION:

U" + U#*2 = 60X + 100X**6; UEXACT=10X**3 WITH VARIABLE
DOMAIN BY LINEARIZING THE U#**2 TERM AS USTAR*U AND KEEPING IT
ON THE LEFT SIDE OF THE EQUATION. THE USER SELECTS:

1) NUMBER OF ELEMENTS

2) SIZE OF DOMAIN

3) X AND U(X) AT THE LEFT BOUNDARY

4) U(X) OR U'(X) AT THE RIGHT BOUNDARY
5) ITERATION STRATEGY FOR DETERMINING U*

6) APPROXIMATION TECHNIQUE FOR THE EXCITATION INTEGRAL
Fededeiededededededeicieieiedeiedcedededrieedricioloiedelleieioirdodokdeinrioioidoidvirioicoiodoooioododoeiodek

aOaOQaOaAOQOQAQAOaQAan
LR I R N R
LI O I N I R

110 COMMON A(100,100),Fs(100),B(100,100),C(100,100),U(100),U0LD(100),
: UEXT(100) ,UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2),ITYPE ,NEL,NSNP

115 CONV=, 0001

c READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC

c CALCULATE NUMBER OF NODAL POINTS

135 NSNP=NEL+1

c DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN=TLEN/FLOAT(NEL)

c ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
c EACH NODE

160 DO 169 IEL=1,NEL

162 ICORR(IEL,1)=IEL

163 ICORR(IEL,2)=IEL+1

164 COORD(IEL+1)=COORD(IEL)+ELEN

169 CONTINUE

c CALL SUBROUTINE NU2KBM TO CREATE A MATRIX AND F VECTOR
170 CALL NU2KBM

c CALL SUBROUTINE NU2KBI TO PERFORM SOLUTION ITERATION
180 CALL NU2KBI(IET)

c CALL SUBROUTINE CLEXTB TO COMPUTE EXACT SOLUTION U=3X*%*2
190 CALL CLEXTB

c CALL SUBROUTINE CLOTPT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY

134

200 CALL CLOTPT(CPUSTAR,IET)
210 END

135

Yedededededededededededeiedededeieded dededededededriedederredede s dridrededrdodrde ke e o dek e et ek b deoke e

SUBROUTINE NU2KBM :
THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *

PROGRAM NU2KB. *
Jededededededtieioedeieicicioloicleloiniioioicleioivicioioieioicidioidcdoocioloioicioioeicioiodoioickleiedoeofeed

a0
* * % *

100 SUBROUTINE NU2KBM

110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),
: UEXT(100),UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2),ITYPE ,NEL,NSNP

120 DIMENSION AE(2,2), FS1E(2), FS2E(2)

c ZERO OUT A MATRIX AND ALL VECTORS

140 DO 210 IZ = 1,NSNP

150 Fs(1z) = 0.

154 U(IZ) =SQRT(60.*COORD(IZ) + 100.*COORD(IZ)**6)
156 UOLD(I1Z)=0.

160 DO 200 JZ = 1,NSNP

170 A(1Z,JZ) = 0.

175 B(1Z2,3Z) = 0.

176 €c(I12,JZ) = 0.

200 CONTINUE

210 CONTINUE
c ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

213 ALPHA=0.

215 DO 375 IEL~=1,NEL

220 AE(1,1)=1. /ELEN

230 AE(1,2)=(-1. /ELEN)

240 AE(2,1)=AE(1,2)

250 AE(2,2)=AE(1,1)

260 FS1E(1)=30.*ALPHA*ELEN + 10.*ELEN**2

270 FS1E(2)=30. *ALPHA*ELEN + 20.*ELEN**2

272 F1=50. *(ALPHA*¥*6) *ELEN

274 F2=100. *(ALPHA#**5)*(ELEN**2)

276 F3=125. *(ALPHA**4)*(ELEN**3)

278 F4=100. *(ALPHA**3)*(ELEN#**4)

280 F5=50, *(ALPHA**2)*(ELEN**5)

281 F6=100. *ALPHA*(ELEN**6) /7.

282 F7=25. *(ELEN**7)/16.

287 FS2E(1)=F1 + F2 + F3 + F4 + F5 + F6 + F7
290 FS2E(2)=F1 + 2.*F2 + 3.*F3 + 4.*F4 + 5.*F5 + 6.%F6 + 7*F7
300 DO 370 II=1,2

310 DO 350 JJ=1,2

320 IN=ICORR(IEL,II)

330 JN=ICORR(IEL,JJ)

340 A(CIN,JN)=A(IN,JN) - AE(II,JJ)

350 CONTINUE

360 FSCIN)=FS1E(II) + FS2E(II) + FS(IN)
370 CONTINUE

372 ALPHA=ALPHA + ELEN
375 CONTINUE

136

420 RETURN
430 END

137

[oXoXoXoNoXe!

100
102

104

105
106
107

109
110
111
112
113
114
115

116
117
119
120

121

122

130
131

133
134
135
136
137
138

c

Fede ik dodedededdededede e e e e e ke dededededede ke de

* SUBROUTINE NU2KBI *
% *
* THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR *
* MAIN PROGRAM NUZKA. *

Yedevedevedederestdrdrdtdededdereseatdrdrdeddedrde etttk dede e dededbdede e dede e dedeabae b e de e e de e e

SUBROUTINE NU2KBI(IET)
COMMON A(100,100),FS(100),B(100,100),€(100,100),U(100),U0LD(100),

: UEXT(100),UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,ITYPE,NEL,NSNP

DIMENSION WKAREA(40600), DIF(100), BE(2,2), USTAR(100), FT(100)
SELECT METHOD OF DETERMINING USTAR

PRINT*, 'SELECT METHOD OF U* DETERMINATION.'
PRINT*,'1: U* = U'
PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'
PRINT*,'3: U* = WEIGHTED AVERAGE OF LAST TWO COMPUTED VALUES OF U'
READ(6,%*) METHU
IF (METHU. EQ. 3) THEN
PRINT*, 'CHOOSE WEIGHTING VALUES A AND B'
READ(6,*) AW,BW
ELSE
CONTINUE
ENDIF

SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR
PRINT*, 'SELECT METHOD OF DETERMINING UNSTEADY B MATRIX.'
PRINT*,'1: MIDPOINT APPROXIMATION FOR U OVER THE ELEMENT.'
PRINT*,'2: U LINEARIZED OVER THE LENGTH OF THE ELEMENT.'
READ(6,%) METHBM
CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS
CALL SETIME
BEGIN ITERATION PROCESS
DO 450 ITER=1,200
DETERMINE VALUE OF U* AT EACH NODE
DO 138 IU=1,NSNP
IF (METHU.EQ. 1) THEN
USTAR(IU)=U(IU)
ELSEIF (METHU.EQ.2) THEN
USTAR(IU)=(U(IU)+UOLD(IU))/2.

ELSE
USTAR(IU)=(AW*U(IU)+BW*UOLD(IU))/ (AW+BW)

DETERMINE UNSTEADY ELEMENT B MATRIX

138

140 DO 210 IEL=1,NEL

145 IF (METHBM.EQ. 1) THEN

146 BE(1,1)=(ELEN/6.)*(USTAR(IEL)+USTAR(IEL+1))

147 BE(1,2)=(ELEN/12.)*(USTAR(IEL)+USTAR(IEL+1))

148 BE(2,1)=BE(1,2)

149 BE(2,2)=BE(1,1)

150 ELSE

151 BE(1,1)=(ELEN/12.)*(3.*USTAR(IEL) + USTAR(IEL+1))
152 BE(1,2)=(ELEN/12.)*(USTAR(IEL) + USTAR(IEL+1))
153 BE(2,1)=BE(1,2)

154 BE(2,2)=(ELEN/12.)*(USTAR(IEL) + 3.*USTAR(IEL+1))
156 ENDIF

170 DO 200 I1I=1,2

175 DO 195 JJ=1,2

180 IN=ICORR(IEL,II)

185 JN=ICORR(IEL,JJ)

190 B(IN,JN)=BE(I1I,JJ) + B(IN,JN)

195 CONTINUE

200 CONTINUE

210 CONTINUE

C DETERMINE TOTAL SYSTEM MATRIX

220 DO 240 IP=1,NSNP
221 DO 232 JP=1,NSNP
230 C(1IP,JP)=A(IP,JP)+B(IP,JP)

c RESET B MATRIX TO ZERO AND LET UOLD=U AND FT=FS

231 B(IP,JP)=0.

232 CONTINUE

235 UOLD(IP)=U(IP)

236 FT(IP)=FS(IP)

240 CONTINUE

C IMPOSE BOUNDARY CONDITIONS
241 C(1,1)=1.

242 C(1,2)=0.

243 FT(1)=ULBC

244 IF (ITYPE.EQ.1) THEN

245 C(NSNP ,NSNP~-1)=0.

246 C(NSNP,NSNP)=1.

247 FT(NSNP)=URBC

248 ELSE

249 FT(NSNP)=FT(NSNP)-URBC
250 ENDIF

255 M=1

260 IDGT=3

270 IQ=100

c CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS

280 CALL LEQT2F(C,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
290 DO 310 NEW=1,NSNP

139

300

306
310

325
330
340
350
355
360
370
380
390
405
410
420
430
440
450
460

461

462
463
464
465
466
467
468
469
470
471
472
473
475
476
477
478
479
480
481
482
483
484
485
486

U(NEW)=FT(NEW)
WRITE(*,*) 'UNEW=',U(NEW)

TEST FOR CONVERGENCE

DIF(NEW)=ABS(U(NEW)-UOLD(NEW))
CONTINUE
DIFMAX=DIF(1)
NMAX=1
DO 390 I1J=1,NEL
IF (DIF(IJ+1).GE.DIF(1J)) THEN
DIFMAX=DIF(1J+1)
NMAX=1J+1
ELSE
CONTINUE
ENDIF
CONTINUE
IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
GO TO 460
ELSE
CONTINUE
ENDIF
CONTINUE
CONTINUE

CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS
CALL GETIME(IET)
QUTPUT HEADER INFORMATION

WRITE(6,464)
WRITE(30,464)
FORMAT(1X, 'EQUATION: U" + U¥*2 = 60X + 100X**6')
IF (ITYPE.EQ.1) THEN
WRITE(6,468) COORD(1),ULBC,COORD(NSNP),URBC
WRITE(30,458) COORD(1),ULBC,COORD(NSNP),URBC
FORMAT(1X,'B.C.: U(',F2.0,")=',F3.0,"; U(',F2.0,')=',F5.0,/)
ELSE
WRITE(6,472) COORD(1),ULBC,COORD(NSNP),URBC
WRITE(30,472) COORD(1),ULBC,COORD(NSNP),URBC
FORMAT(1X,'B.C.: U(',F2.0,')=',F3.0,';DU/DX(',F2.0,')=",F5.0,/)
ENDIF ’ :
IF (METHU.EQ.1) THEN
WRITE(6,478)
WRITE(30,478)
FORMAT(1X, ' ITERATION METHOD: U*=U',/)
ELSEIF (METHU.EQ.2) THEN
WRITE(6,482)
WRITE(30,482)
FORMAT(1X, ' ITERATION METHOD: U#*=(U+UOLD)/2',/)
ELSE
WRITE(6,486)AW,BW,AW,BW
WRITE(30,486)AW,BW,AW,BW
FORMAT(1X, ' ITERATION METHOD: U#=(',F3.0,'*U +',F3.0,'*UCLD)/(',

140

:F3.0,'+',F3.0,")',/)
487 ENDIF
488 IF (METHBM.EQ.1) THEN
489 WRITE(6,491)
490 WRITE(30,491)
491 FORMAT(1X, "METHOD OF B MATRIX INTEGRAL EVALUATION: MIDPOINT',/)
496 ELSE
497 WRITE(6,499)
498 WRITE(30,499)
499 FORMAT(1X, 'METHOD OF B MATRIX INTEGRAL EVALUATION: LINEAR',/)
500 ENDIF
502 IF (ITER.GE.200) THEN
503 WRITE(6,505)
504 WRITE(30,505)
505 FORMAT(1X, 'CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
506 ELSEIF (ABS(U(NMAX)).GT. (10.%**%20).OR. ABS(U(NSNP-1)).GT.
: (10.%*20)) THEN
507 WRITE(6,509)
508 WRITE(30,509)
509 FORMAT(1X, ' SOLUTION PROCESS DIVERGES. ')
510 ELSE
511 WRITE(6,520) ITER,NEL
515 WRITE(30,520) ITER,NEL
520 FORMAT(1X, 'CONVERGENCE OBTAINED AFTER ',I3,' ITERATIONS USING ',
:I3,' ELEMENTS.',/)
525 ENDIF
530 RETURN
540 END

141

SUBROUTINE CLEXTB

THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=10X**3, FOR
MA

IN PROGRAM NU2KB AT THE SPECIFIED NODAL POINTS.
Feddeirieiriririeiedeiciekdeioiiriekdeirieidrioirindokdeiieindeionilerendioroooerioboeioedeookdbdook

anaoaQaa
** * %

100 SUBROUTINE CLEXTB

110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),
: UEXT(100) ,UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2) ,ITYPE,NEL,NSNP

130 DO 150 NN = 1,NSNP

140 UEXT(NN) = 10.*COORD(NN)*#*3
150 CONTINUE

160 RETURN

170 END

142

AR AR Aot R drdededrddedededr dede ik de b e dededrdertatdedededededededede e e dedededrdrdrdede e ek

* SUBROUTINE CLOTPT *
* THIS SUBROUTINE COMPUTES THE PER CENT ERROR BETWEE!" THE EXACT *
* AND FEM SOLUTIONS, CPU* FOR THE ITERATION PROCESS, AND PRINTS *
*

OUT ALL DATA IN TABULAR FORM FOR MAIN PROGRAMS NU2KA & NU2KB. *
dedededrieieiririeiedrinieideieieirieleiedeieioiieiorioeolokodoifotdniaedeainirdniedobdniodeiniedeloioioriokodor

aaaoaaQn

100 SUBROUTINE CLOTPT(CPUSTAR,IET)

110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),
: UEXT(100) ,UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN, ICORR(100,2),ITYPE,NEL,NSNP

115 SUMDIF=0.

C CALCULATE PER CENT ERROR AT EACH NODE AND SUM THE ABSOLUTE VALUE
c OF ALL THE ERRORS

120 DO 150 IK=2,NSNP

130 UDIF(IK)=100. *(U(IK)-UEXT(IK))/UEXT(IK)
140 SUMDIF=SUMDIF + ABS(UDIF(IK))

150 CONTINUE

160 UDIF(1)=U(1)-UEXT(1)

c COMPUTE THE ELAPSED TIME OF THE ITERATION PROCESS

164 ELTIME=IET*. 000026

165 WRITE(6,169) ELTIME

166 WRITE(30,169)ELTIME

169 FORMAT(1X,'ELAPSED TIME FOR THE ITERATION PROCESS IS ',F9.4,
:' SECONDS. ')

c OUTPUT DATA IN TABULAR FORMAT

170 WRITE(6,180)

175 WRITE(30,180)

180 FORMAT(/,1X,'X-COORD',3X,'U EXACT',3X,'U FEM',7X,'% DIFF')
190 WRITE(6,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
195 WRITE(30,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
200 FORMAT(/,2X,Fs. 3,4X,F9. 4,3X,F9. 4,4X,F5. 1)

c CALCULATE CPU* FOR THE ITERATION PROCESS

205 CPUSTAR=ELTIME*SUMDIF/NSNP

210 WRITE(6,220) CPUSTAR

215 WRITE(30,220) CPUSTAR .

220 FORMAT(/,1X, CPU* FOR THE ITERATION PROCESS IS ',F9.4,' SECONDS.')
230 RETURN

240 END

143

APPENDIX G. PROGRAM LISTINGS FOR QUASILINEARIZATION

Qoo

110

115

130

135

137

160

163
164
169

170

180

!
;
§
;
i

PROGRAM NU2QA

THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL
EQUATION

U" - Uf*2 = 6 - 9X*¥4; UEXACT=3X**2 WITH VARIABLE DOMAIN
BY THE PROCESS OF QUASILINEARIZATION. THE USER SELECTS:

1) NUMBER OF ELEMENTS

2) SIZE OF DOMAIN

3) X AND U(X) AT THE LEFT BOUNDARY

4) U(X) OR U'(X) AT THE RIGHT BOUNDARY

5) ITERATION STRATEGY FOR DETERMINING U*

6) INTERPOLATION STRATEGY FOR THE B MATRIX INTEGRAL

7) INTERPOLATION STRATEGY FOR THE EXCITATION INTEGRAL
Fedfrieieiciririciriciciciieloloiciileloioiniciniooleieideiloiriciolniniioiniciicicickdoiiviciricieiocioiokovioeloloiok

ok ok ok ok %%k k%
L B N B R R

COMMON A(100,100),FSs(100),B(100,100),C(100,100),U(100),UOLD(100),

: UEXT(100),UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: ICORR(100,2),ITYPE,NEL,NSNP

CONV=. 0001

READ IN PARAMETERS FROM DATA FILE

READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC
CALCULATE NUMBER OF NODAL POINTS

NSNP=NEL+!

DETERMINE ELEMENT SIZE OF EQUAL LENGTHS
ELEN=TLEN/FLOAT(NEL)

ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
EACH NODE

DO 169 IEL~1,NEL

ICORR(IEL,1)=IEL

ICORR(IEL,2)=IEL+1

COORD(IEL+1)=COORD(IEL)+ELEN
CONTINUE
CALL SUBROUTINE NU2QAM TO CREATE A MATRIX AND F VECTOR
CALL NU2QAM
CALL SUBROUTINE NU2QAI TO PERFORM SOLUTION ITERATION
CALL NU2QAI(IET)

CALL SUBROUTINE QLEXTA TO COMPUTE EXACT SOLUTION U=3X¥*2

144

190

200
210

CALL QLEXTA
CALL SUBROUTINE QLOTPT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY

CALL QLOTPT(CPUSTAR, IET)
END

145

aQaoaan

100
110

120

140

dedrdededriededededededededededodedeiededededdedeieeidecieironeioirieioaioiraiooioedrakdeieidoiedeiob ook
* SUBROUTINE NU2QAM :
*

* THIS SUBROUTINE COMPUTES THE A MATRIX AND STEADY F VECTOR FOR *
*

MAIN PROGRAM NU2QA.

SUBROUTINE NU2QAM
COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),U0LD(1C0),

: UEXT(100) ,UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: ICORR(100,2),ITYPE ,NEL,NSNP

DIMENSION AE(2,2), FS1E(2), FS2E(2)
ZERO OUT A MATRIX AND ALL VECTORS
DO 210 IZ = 1,NSNP

FS(IZ) = 0.
U(1Z) =SQRT(ABS(9.*COORD(I2)**4-6.))
UOLD(12Z)=0.
DO 200 JZ = 1, NSNP
A(12,J2) =
B(1Z,J2) = 0.
C(IZ,JZ) = 0.
CONTINUE
CONTINUE

ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

ALPHA=0.
DO 375 IEL=1,NEL
AE(1,1)=1. /ELEN
AE(1,2)=(-1. /ELEN)
AE(2,1)=AE(1,2)
AE(2,2)=AE(1,1)
FS1E(1)=3.*ELEN
FS1E(2)=FS1E(1)
F1=(ALPHA**4)*ELEN/2.
F2=2.*(ALPHA**3)*(ELEN**2)/3.
3=(ALPHA**2)%(ELEN**3) /2.
ra ALPHA*(ELEN**4) /5.
F5=(ELEN**5)/30.
FS2E(1)=(-9.)*(F1 + F2 + F3 + F&4 + T5)
FS2E(2)=(-9)*(F1 + 2.*F2 + 3.*F3 + 4.*F4 + 5.*F5)
DO 370 II=1,2
DO 350 JJ=1,2
IN=ICORR(IEL, II)
JN=ICORR(IEL, JJ)
ACIN,JN)=ACIN,JN) - AE(II,JJ)
CONTINUE
FSCIN)=FS1E(II) + FS2E(II) + FSCIN)
CONTINUE
ALPHA=ALPHA + ELEN
CONTINUE
RETURN
END

146

c dededededeiededeededekk dedeiedddikededelekeiniedededeededeiekedeieiedeieelieiodeieioiedeiekdoireoodrieiok oot
c * SUBROUTINE NU2QAI ’ *
c * ¢ #*
c * THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR *
c * MAIN PROGRAM NU2QA. *
C Fededesededededededatidedrdeiiededeeeiededdnirieidedeieirieieiniieioirrieiedeieidedekderiekoddeieiodeiekdririok

100 SUBROUTINE NU2QAI(IET)

102 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),
: UEXT(100) ,UDIF(100),COORD(100) ,ELEN,CONV,ELTIME ,ULBC,URBC,
: ICORR(100,2) , ITYPE,NEL,NSNP

104 DIMENSION WKAREA(40600), DIF(100), BE(2,2), USTAR(100), FT(100),
: FUE(2) ,FU(100)

C SELECT METHOD OF DETERMINING USTAR

105 PRINT*, SELECT METHOD OF U* DETERMINATION.'

106 PRINT*,'1: U* = U’

107 PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U’

108 PRINT*, 3: U* = WEIGHTED AVERAGE OF LAST TWO COMPUTED VALUES OF U'
109 READ(6,*) METHU

110 IF (METHU.EQ.3) THEN

111 PRINT*, 'CHOOSE WEIGHTING VALUES A AND B'

112 READ(6,*) AW,BW

113 ELSE

114 CONTINUE

115 ENDIF

c SELECT METHOD OF DETERMINING UNSTEADY B MATRIX

116 PRINT*, SELECT METHOD OF DETERMINING UNSTEADY B MATRIX.'
117 PRINT*,'1l: MIDPOINT APPROXIMATION FOR U OVER THE ELEMENT.'
119 PRINT*,'2: U LINEARIZED OVER THE LENGTH OF THE ELEMENT.'
120 READ(6,*) METHBM

c SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

121 PRINT*, SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR.'
122 PRINT*,'1: MIDPOINT APPROXIMATION'

123 PRINT¥*, 2 1/4 - 3/4 APPROXIMATION'

124 PRINT*,'3: LINEAR'

125 READ(6,*) METHFU

c CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS
127 CALL SETIME

c BEGIN ITERATION PROCESS

128 DO 450 ITER=1,200

c DETERMINE VALUE OF U* AT EACH NODE AND SET VALUE OF UNSTEADY
c FORCE VECTOR TO ZERO

129 DO 138 IU=1,NSNP

130 FU(IU)=0.
131 IF (METHU.EQ.1) THEN

147

132
133
134
135
136
137
138

140
145
146
147
148
149
150
151
152
153
154
156

157
158
159
160
161
162
163

165
166
167
169
171
172
173
174

175
176

177
178
179

USTAR(IU)=U(IU)
ELSEIF (METHU.EQ.2) THEN
USTAR(IU)=(U(IU)+UOLD(IU))/2.
ELSE
USTAR(IU)=(AW*U(IU)+BW*UOLD(IU))/(AW+BW)
ENDIF
CONTINUE

DETERMINE UNSTEADY ELEMENT B MATRIX

DO 210 IEL=1,NEL

IF (METHBM.EQ. 1) THEN
BE(1,1)=(ELEN/3.)*(USTAR(IEL)+USTAR(IEL+1))
BE(1,2)=(ELEN/6.)*(USTAR(IEL)+USTAR(IEL+1))
BE(2,1)=BE(1,2)
BE(2,2)=BE(1,1)

ELSE
BE(1,1)=(ELEN/6.)*(3. *USTAR(IEL) + USTAR(IEL+1))
BE(1,2)=(ELEN/6.)*(USTAR(IEL) + USTAR(IEL+1))
BE(2,1)=BE(1,2)
BE(2,2)=(ELEN/6.)*(USTAR(IEL) + 3.*USTAR(IEL+1))

ENDIF

DETERMINE SYSTEM B MATRIX BY DISTRIBUTING ELEMENT B MATRICES
ACCORDING TO THE LOCAL TO GLOBAL CORRESPONDENCE

DO 163 II=1,2
DO 162 JJ=1,2
IN=ICORR(IEL,II)
JN=ICORR(IEL,JJ)
B(IN,JIN)=BE(I1I1,JJ) + B(IN,JN)
CONTINUE
CONTINUE

DETERMINE UNSTEADY ELEMENT FORCE VECTOR

IF (METHFU.EQ.1) THEN
FUE(1)=(ELEN/2.)*((USTAR(IEL)+USTAR(IEL+1)) /2.)¥*¥2
FUE(2)=FUE(1)
ELSEIF (METHFU.EQ.2) THEN
FUE(1)=(ELEN/2.)*(3.*USTAR(IEL)/4. + USTAR(IEL+1)/4.)**2
FUE(2)=(ELEN/2.)*(USTAR(IEL)/4. + 3.*USTAR(IEL+1)/4.)¥**2
ELSE
FUE(1)=ELEN*(USTAR(IEL)**2/4. +USTAR(IEL)*USTAR(IEL+1)/6.
+ USTAR(IEL+1)%**2/12.)
FUE(2)=ELEN*(USTAR(IEL)**2/12. + USTAR(IEL)*USTAR(IEL+1)/6.
+ USTAR(IEL#1)*%2/4.)
ENDIF

DETERMINE UNSTEADY SYSTEM FORCE VECTOR BY DISTRIBUTING ELEMENTAL
FORCE VECTORS ACCORDING TO THE LOCAL TO GLOBAL CORRESPONDENCE

DO 180 II=1,2

IN=ICORR(IEL,II)
FUCIN)=FUE(II) + FU(IN)

148

CONTINUE
CONTINUE

DETERMINE TOTAL SYSTEM MA™RIX

DO 240 IP=1,NSNP
DO 232 JP=1,NSNP
Cc(I1p,JP)=A(IP,JP)-B(IP,JP)

RESET B MATRIX TO ZERO

B(IP,JP)=0.
CONTINUE

UPDATE VALUE OF U AT THE PREVIOUS ITERATION
UOLD(IP)=U(IP)
DETERMINE TOTAL SYSTEM FORCE VECTOR

FT(IP)=FS(IP)-FU(IP)
CONTINUE

IMPOSE BOUNDARY CONDITIONS

C(1,1)=1.

C(1,2)=0.

FT(1)=ULBC

IF (ITYPE.EQ.1) THEN
C(NSNP,NSNP-1)=0.
C(NSNP,NSNP)=1.
FT(NSNP)=URBC

ELSE
FT(NSNP)=FT(NSNP) -URBC

ENDIF

M=1

IDGT=3

1g=100

CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS
CALL LEQT2F(C,M,NSNP,IQ,FT,IDGT,WKAREA,IER)

DO 310 NEw=1,NSNP
U(NEW)=FT(NEW)
WRITE(*,*) 'UNEW=',6U(NEW)

TEST FOR CONVERGENCE

DIF(NEW)=ABS(U(NEW) -UOLD(NEW))
CONTINUE
DIFMAX=DIF(1)
NMAX=1
DO 390 IJ=1,NEL
IF (DIF(IJ+1).GE.DIF(1J)) THEN
DIFMAX=DIF(I1J+1)
NMAX=IJ+1

149

360

502

ELSE
CONTINUE
ENDIF
CONTINUE
IF (U(NMAX).EQ.0.) GO TO 450
IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
GO TO 460
ELSE
CONTINUE
ENDIF
CONTINUE
CONTINUE

CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS
CALL GETIME(IET)
OUTPUT HEADER INFORMATION

WRITE(6,464)
WRITE(30,464)
FORMAT(1X, 'EQUATION: U" - U¥*2 = 6 - 9X**4')
IF (ITYPE.EQ.1) THEN
WRITE(6,468) COORD(1),ULBC,COORD(NSNP),URBC
WRITE(30,468) COORD(1),ULBC,COORD(NSNP),URBC
FORMAT(1X,'B.C.: U(',F2.0,')=',F2.0,'; U(',F2.0,')=',F4.0,/)
ELSE
WRITE(6,472) COORD(1),ULBC,COORD(NSNP),URBC
WRITE(30,472) COORD(1),ULBC,COORD(NSNP),URBC
FORMAT(1X,'B.C.: U(',F2.0,')=',F2.0,';DU/DX(',F2.0,')="',F4.0,/)
ENDIF
IF (METHU.EQ. 1) THEN
WRITE(6,478)
WRITE(30,478)
FORMAT(1X, ' ITERATION METHOD: U*=U',/)
ELSEIF (METHU.EQ.2) THEN
WRITE(6,482)
WRITE(30,482)
FORMAT(1X, ' ITERATION METHOD: U*=(U+UOLD)/2',/)
ELSE
WRITE(6,486)AW,BW,AW,BW
WRITE(30,486)AW,BW,AW,BW
FORMAT(1X,' ITERATION METHOD: U*=(',F4.1,'*U +',F4.1,'*UOLD)/("',

:F6.1,'+' ,F4.1,")',/)

ENDIF
IF (METHBM.EQ. 1) THEN

WRITE(6,491)

WRITE(30,491)

FORMAT(1X, 'METHOD OF B MATRIX INTEGRAL EVALUATION: MIDPOINT',/)
ELSE

WRITE(6,499)

WRITE(30,499)

FORMAT(1X, '"METHOD OF B MATRIX INTEGRAL EVALUATION: LINEAR',/)
ENDIF
IF (METHFU.EQ. 1) THEN

WRITE(6,504)

150

503 WRITE(30,504) '
504 FORMAT(1X, 'METHOD OF EXCITATION INTEGRAL EVALUATION: MIDPOINT',/)
505 ELSEIF (METHFU.EQ.2) THEN
506 WRITE(6,508)
507 WRITE(30,508) '
508 FORMAT(1X, 'METHOD OF EXCITATION INTEGRAL EVALUATION: 1/4-3/4',/)
509 ELSE
510 WRITE(6,512)
511 WRITE(30,512) '
512 FORMAT(1X, '"METHOD OF EXCITATION INTEGRAL EVALUATION: LINEAR',/)
513 ENDIF
515 IF (ITER.GE.200) THEN
516 WRITE(6,518)
517 WRITE(30,518)
518 FORMAT(1X, ' CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
519 ELSEIF (ABS(U(NMAX)).GT. (10.%*%20).OR. ABS(U(NSNP-1)). GT.
: (10.*%20)) THEN
520 WRITE(6,522)
521 WRITE(30,522)
522 FORMAT(1X, ' SOLUTION PROCESS DIVERGES. ')
523 ELSE
524 WRITE(6,526) ITER,NEL
525 WRITE(30,526) ITER,NEL
526 FORMAT(1X, ' CONVERGENCE OBTAINED AFTER ',I3,' ITERATIONS USING ',
:I13,' ELEMENTS.',/)

530 ENDIF
540 RETURN
550 END

151

aaaaQaaa

100
110

130
140
150
160
170

* SUBROUTINE QLEXTA

* THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=3X**2, FOR
* MAIN PROGRAM NU2QA AT THE SPECIFIED NODAL POINTS.

Fedededededkdeiedededededededodekioke e deiededefehede otk driedededededrderdedede e dedededb v dedbdbdriede ek dedede ek

SUBROUTINE QLEXTA

COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),U0LD(100),
: UEXT(100) ,UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: ICORR(100,2),ITYPE ,NEL,NSNP

DO 150 NN = 1,NSNP

UEXT(NN) = 3.*COORD(NN)**2

CONTINUE
RETURN
END

152

aocanmaoaaoaOaoaaonn

110

115

130

135

137

160

163
164
169

170

180

190

|
|
|
§
|
|
|

PROGRAM NU2QB

THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL
EQUATION:

U" + Us*2 = 60X + 100X**6; UEXACT=10X**3 WITH VARIABLE
DOMAIN BY THE PROCESS OF QUASILINEARIZATION. THE USER SELECTS:

1) NUMBER OF ELEMENTS

2) SIZE OF DOMAIN

3) X AND U(X) AT THE LEFT BOUNDARY

4) U(X) OR U'(X) AT THE RIGHT BOUNDARY

5) ITERATION STRATEGY FOR DETERMINING U*

6) INTERPOLATION STRATEGY FOR THE B MATRIX INTEGRAL

7) INTERPOLATION STRATEGY FOR THE EXCITATION INTEGRAL
Fedededededededehddededdeieiofodeioiekedoeididokeioiriieioioioiridrioaironiokiotinndokionrloeork

LA BE Bk JE B b I 3 A B
LR R R I

COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

: UEXT(100),UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: ICORR(100,2),ITYPE ,NEL,NSNP

CONV=, 0000001

READ IN PARAMETERS FROM DATA FILE

READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC
CALCULATE NUMBER OF NODAL POINTS

NSNP=NEL+1

DETERMINE ELEMENT SIZE OF EQUAL LENGTHS
ELEN=TLEN/FLOAT(NEL)

ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
EACH NODE

DO 169 IEL=1,NEL

ICORR(IEL,1)=IEL

ICORR(IEL,2)=IEL+1

COORD(IEL+1)=COORD(IEL)+ELEN
CONTINUE
CALL SUBROUTINE NU2QBM TO CREATE A MATRIX AND F VECTOR
CALL NU2QBM
CALL SUBROUTINE NU2QBI TO PERFORM SOLUTION ITERATION
CALL NU2QBI(IET)
CALL SUBROUTINE QLEXTB TO COMPUTE EXACT SOLUTION U=3X¥*¥2
CALL QLEXTB

CALL SUBROUTINE QLOTPT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY

153

200
210

CALL QLOTPT(CPUSTAR, IET)
END

154

[ooNoRoNoNe]

100
110

120

dededededededfortrrdrdedrdededeh deddedkdedededededrk dede e drdede e e vl dedrde e e dededededek

* SUBROUTINE NU2QBM :
*

* THIS SUBROUTINE COMPUTES THE A MATRIX AND STEADY F VECTOR FOR *
* MAIN PROGRAM NU2QB. *

Federedrrsedededr derdriere i rriededr e dede st e e e de dedre de et e R el dedab e et e e

SUBROUTINE NU2QBM
COMMON A(100,100),Fs(100),B(100,100),C(100,100),0(100),U0LD(100),

: UEXT(100),UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: ICORR(100,2),ITYPE ,NEL,NSNP

DIMENSION AE(2,2), FS1E(2), FS2E(2), G1(100), G2(100), G3(100)
ZERO OUT A MATRIX AND ALL VECTORS

DO 210 IZ = 1,NSNP

FS(12) = 0.
IF (COORD(IZ).LE.1l.) THEN
U(12)=0.
ELSE
G1(IZ) = 60.*COORD(IZ) + 100.*COORD(IZ)**6
G2(IZ) = 1500.*COORD(1Z)**4/SQRT(G1(IZ))
G3(IZ) = (60.+600.*COORD(IZ)**5)%**2/(4.*G1(IZ)**1.5)

gg%Z)=SQRT(ABS(G1(IZ)-GZ(IZ)+G3(IZ)))

IF

U(IZ) = SQRT(60.*COORD(IZ) + 100.*COORD(IZ)*¥*6)
UOLD(IZ)= U(IZ)

DO 200 JZ = 1,NSNP

A(12,J32) = 0.
B(IZ2,JZ) = 0.
c(1z,3Z) = 0.
CONTINUE
CONTINUE

ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

ALPHA=0.
DO 375 IEL=1,NEL
AE(1,1)=1. /ELEN
AE(1,2)=(-1. /ELEN)
AE(2,1)=AE(1,2)
AE(2,2)=AE(1,1)
FS1E(1)=30. *ALPHA*ELEN + 10.*ELEN#¥2
FS1E(2)=30. ALPHA*ELEN + 20.*ELEN#*2
F1=50. *(ALPHA**6)*ELEN
F2=100. *(ALPHA®*5)*(ELEN**2)
F3=125. *(ALPHA®*4) *(ELEN*¥3)
F4=100. *(ALPHA*#3)*(ELEN**4)
F5=50. *(ALPHA%*2)#*(ELEN**5)
F6=100. *ALPHA*(ELEN**6) /7.
F7=25. *(ELEN**7)/16.
FS2E(1)=F1 + F2 + F3 + F4 + F5 + F6 + F7
FS2E(2)=F1 + 2.*F2 + 3.%F3 + &4 *F4 + 5.%F5 + 6.*F6 + J*F7
DO 370 II=1,2
DO 350 JJ=1.2
IN=ICORR(IEL,II)

155

JN=ICORR(IEL,JJ)
A(IN,JIN)=A(IN,JN) - AE({II,JJ)
CONTINUE
FS(IN)=FS1E(I1I) + FS2E(II) + FS(IN)
CONTINUE
ALPHA=ALPHA + ELEN
CONTINUE
RETURN
END

156

* SUBROUTINE NU2QBI

* THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR

* MAIN PROGRAM NU2QA.
Fedederrdedeedie oo ededrreksededridediedea skl ookl deinrdeidededdedeirio el

aQoaoaQa

100 SUBROUTINE NU2QBI(IET)

102 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),U0LD(100),
: UEXT(100) ,UDIF(100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
: ICORR(100,2),ITYPE,NEL,NSNP

104 DIMENSION WKAREA(40600), DIF(100), BE(2,2), USTAR(100), FT(100),
:FUE(2),FU(100)

c SELECT METHOD OF DETERMINING USTAR

105 PRINT*,'SELECT METHOD OF U#* DETERMINATION.'

106 PRINT*,'1l: U*x = U'

107 PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'

108 PRINT*,'3: U* = WEIGHTED AVERAGE OF LAST TWO COMPUTED VALUES OF U'
109 READ(6,%*) METHU

110 IF (METHU.EQ.3) THEN

111 PRINT*, 'CHOOSE WEIGHTING VALUES A AND B'

112 READ(6,*) AW,BW

113 ELSE
114 CONTINUE
115 ENDIF

c SELECT METHOD OF DETERMINING UNSTEADY B MATRIX

116 PRINT*,'SELECT METHOD OF DETERMINING UNSTEADY B MATRIX.'
117 PRINT*,'1: MIDPOINT APPROXIMATION FOR U OVER THE ELEMENT.'
119 PRINT*,'2: U LINEARIZED OVER THE LENGTH OF THE ELEMENT.'
120 READ(6,*) METHBM

c SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

121 PRINT*,'SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR.'
122 PRINT*,'1: MIDPOINT APPROXIMATION'

123 PRINT*,'2: 1/4 - 3/4 APPROXIMATION'

1246 PRINT*,'3: LINEAR'

125 READ(6,*) METHFU

c CALL SUBKJUTINE SETIME TO BEGIN TIMING ITERATION PROCESS
127 CALL SETIME

c BEGIN ITERATION PROCESS

128 DO 450 ITER=1,200

c DETERMINE VALUE OF U* AT EACH NODE AND SET VALUE OF UNSTEADY
c FORCE VECTOR TO ZERO

129 DO 138 IU=1,NSNP

130 FU(IU)=0.
131 IF (METHU.EQ. 1) THEN

157

157
158
159
160
161
162
163

165
166
167
169
171
172
173
174

175
176

177
178
179

USTAR(IU)=U(IU)
ELSEIF (METHU.EQ.2) THEN
USTAR(IU)=(U(IU)+UOLD(IU))/2.
ELSE
USTAR(IU)=(AW*U(IU)+BW*UOLD(IU))/(AW+BW)
ENDIF
CONTINUE

DETERMINE UNSTEADY ELEMENT B MATRIX

DO 210 IEL~1,NEL

IF (METHBM.EQ.1) THEN
BE(1,1)=(ELEN/3.)*(USTAR(IEL)+USTAR(IEL+1))
B£ 1,2)=(ELEN/6.)*(USTAR(IEL)+USTAR(IEL+1))
BE(2,1)=BE(1,2)
BE(2,2)=BE(1,1)

ELSE
BE(1,1)=(ELEN/6.)*(3.*USTAR(IEL) + USTAR(IEL+1))
BE(1,2)=(ELEN/6.)*(USTAR(IEL) + USTAR(IEL+1))
BE(2,1)=BE(1,2)
BE(2,2)=(ELEN/6.)*(USTAR(IEL) + 3.*USTAR(IEL+1))

ENDIF

DETERMINE SYSTEM B MATRIX BY DISTRIBUTING ELEMENT B MATRICES
ACCORDING TO THE LOCAL TO GLOBAL CORRESPONDENCE

DO 163 II=1,2
DO 162 JJ=1,2
IN=ICORR(IEL,II)
JN=ICORR(IEL,JJ)
B(IN,JN)=BE(II,JJ) + B(IN,JN)
CONTINUE
CONTINUE

DETERMINE UNSTEADY ELEMENT FORCE VECTOR

IF (METHFU.EQ.1) THEN
FUE(1)=(ELEN/2.)*((USTAR(IEL)+USTAR(IEL+1))/2.)¥%2
FUE(2)=FUE(1)
ELSEIF (METHFU.EQ.2) THEN
FUE(1)=(ELEN/2.)*(3.*USTAR(IEL) /4. + USTAR(IEL+1)/4.)**2
FUE(2)=(ELEN/2.)*(USTAR(IEL)/4. + 3.*USTAR(IEL+1)/4.)**2
ELSE :
FUE(1)=ELEN*(USTAR(IEL)**2/4. +USTAR(IEL)*USTAR(IEL+1)/6.
+ USTAR 'SL+1)**2/12.)
FUE(2)= _EN*(USTAR(IEL)**2/12. + USTAR(IEL)*USTAR(IEL+1)/é.
+ USTAR(IEL+1)*%*2/4.)
ENDIF

DETERMINE UNSTEADY SYSTEM FORCE VECTOR BY DISTRIBUTING ELEMENTAL
FORCE VECTORS ACCORDING TO THE LOCAL TO GLOBAL CORRESPONDENCE

DO 180 II=1,2

IN=ICORR(IEL,II)
FUCIN)=FUE(II) + FU(IN)

158

]

180 CONTINUE
210 CONTINUE

c DETERMINE TOTAL SYSTEM MATRIX
220 DO 240 IP=1,NSNP

221 DO 232 JP=1,NSNP

230 C(IP,JP)=A(IP,JP)+B(IP,JP)

c RESET B MATRIX TO ZERO

231 B(IP,JP)=0.
232 CONTINUE
L)
C UPDATE VALUE OF U AT THE PREVIOUS ITERATION
. 235 UOLD(IP)=U(IP)
c DETERMINE TOTAL SYSTEM FORCE VECTOR
236 FT(IP)=FS(IP)+FU(IP)
240 CONTINUE
c IMPOSE BOUNDARY CONDITIONS
241 c(1,1)=1.
242 c(1,2)=0.
243 FT(1)=ULBC
244 IF (ITYPE.EQ.1) THEN
245 C(NSNP,NSNP-1)=0.
246 C(NSNP,NSNP)=1.
247 FT(NSNP)=URBC
248 ELSE
249 FT(NSNP)=FT(NSNP) -URBC
250 ENDIF
257 M=1
260 IDGT=3
270 1Q=100
c CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS
280 CALL LEQT2F(C,M,NSNP,IQ,FT,IDGT,WKAREA, IER)
290 DO 310 NEW=1,NSNP
p 300 U(NEW)=FT(NEW)
c WRITE(*,*) 'UNEW=',U(NEW)
. c TEST FOR CONVERGENCE
306 DIF(NEW)=ABS(U(NEW)-UOLD(NEW))

310 CONTINUE

320 DIFMAX=DIF(1)
325 NMAX=1

330 DO 390 1J=1,NEL

340 IF (DIF(1J+1).GE.DIF(1J)) THEN
350 DIFMAX=DIF(IJ+1)
355 NMAX=IJ+1

159

360 ELSE

370 CONTINUE

380 ENDIF

390 CONTINUE

405 IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN

410 GO TO 460
420 ELSE
430 CONTINUE

440 ENDIF
450 CONTINUE
460 CONTINUE

c CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS
461 CALL GETIME(IET)
c OUTPUT HEADER INFORMATION

462 WRITE(6,464)

463 WRITE(30,464)

464 FORMAT(1X,'EQUATION: U" + U**2 = 60X + 100X**6')

465 IF (ITYPE.EQ.1) THEN

466 WRITE(6,468) COORD(1),ULBC,COORD(NSNP),URBC

467 WRITE(30,468) COORD(1),ULBC,COORD(NSNP),URBC

468 FORMAT(1X,'B.C.: U(',F2.0,')=',F2.0,'; U(',F2.0,')=',F5.0,/)

469 ELSE

470 WRITE(6,472) COORD(1),ULBC,COORD(NSNP),URBC

471 WRITE(30,472) COORD(1),ULBC,COORD(NSNP),URBC

472 FORMAT(1X,'B.C.: U(',F2.0,')=',F2.0,';DU/DX(',F2.0,"')=",F4.0,/)

473 ENDIF

475 IF (METHU.EQ.1) THEN

476 WRITE(6,478)

477 WRITE(30,478)

478 FORMAT(1X, ' ITERATION METHOD: U*=U',/)

479 ELSEIF (METHU.EQ.2) THEN

480 WRITE(6,482)

481 WRITE(30,482)

482 FORMAT(1X, ' ITERATION METHOD: U*=(U+UOLD)/2',/)

483 ELSE

484 WRITE(6,486)AW,BW,AW,BW

485 WRITE(30,486)AW,BW,AW,BW

486 FORMAT(1X, ' ITERATION METHOD: U*=(',F4.1,'*U +',F4.1,"'*UOLD)/(',
:F4.1,'+',F4.1,")",

487 ENDIF

488 IF (METHBM.EQ.1) THEN

489 WRITE(6,491)

490 WRITE(30,491)

491 FORMAT(1X, 'METHOD OF B MATRIX INTEGRAL EVALUATION: MIDPOINT',/)

496 ELSE

497 WRITE(6,499)

498 WRITE(30,499)

499 FORMAT(1X, 'METHOD OF B MATRIX INTEGRAL EVALUATION: LINEAR',/)

500 ENDIF

501 IF (METHFU.EQ.1) THEN

502 WRITE(6,504)

503 WRITE(30,504)

160

FORMAT(1X, '"METHOD OF EXCTTATION INTEGRAL EVALUATION: MIDPOINT',/)
ELSEIF (METHFU.EQ.2) THE

WRITE(6,508) "t

WRITE(30,508)

FORMAT(1X, '"METHOD OF EXCITATION INTEGRAL EVALUATION: 1/4-3/4',/)
ELSE

WRITE(6,512)

WRITE(30,512)

FORMAT(1X, 'METHOD OF EXCITATION INTEGRAL EVALUATION: LINEAR',/)
ENDIF
IF (ITER.GE.200) THEN

WRITE(6,518)

WRITE(30,518)

FORMAT(1X, ' CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
ELSEIF (ABS(U(NMAX)).GT. (10.%*%20). OR. ABS(U(NSNP-1)). GT.

:(10.%%20)) THEN

WRITE(6,522)
WRITE(30,522)
FORMAT(1X, 'SOLUTION PROCESS DIVERGES. ')
ELSE
WRITE(6,526) ITER,NEL
WRITE(30,526) ITER,NEL
FORMAT(1X, ' CONVERGENCE OBTAINED AFTER ',I3,' ITERATIONS USING ',

:13,' ELEMENTS.',/)

ENDIF
RETURN
END

161

Fedededededededrdededcdededricdedrdedededihededeiedededede dednie dedede s dedede e

* SUBROUTINE QLEXTB
%*
* THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=10X**3, FOR

* MAIN PROGRAM NU2QB AT THE SPECIFIED NODAL POINTS.
Fedesedededeieededririokirioitieideieianireiobdrieieienriioroioriolrioeinriokooetoeeokotiorioo

aaoaaaoaa
%+ o+ #

100 SUBROUTINE QLEXTB

110 COMMON A(100,100),FS(100),B(100,100),C(100,100),0(100),U0LD(100),
: UEXT(100) ,UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
: ICORR(100,2),ITYPE ,NEL,NSNP

130 DO 150 NN = 1,NSNP

140 UEXT(NN) = 10.*COORD(NN)**3
150 CONTINUE

160 RETURN

170 END

162

Fedekekdededeiedekdodededeiekde i riededededekdefek o dede dededereredeededededek it e ek dedede i dede deod e deoke

* SUBROUTINE QLOTPT *
* THIS SUBROUTINE COMPUTES THE PER CENT ERROR BETWEEN THE EXACT *
* AND FEM SOLUTIONS, CPU* FOR THE ITERATION PROCESS, AND PRINTS *

* OUT ALL DATA IN TABULAR FORM FOR MAIN PROGRAM NU2QA AND NU2QB. *
Fededeicdedeiieieieieieieieioideivdeioimiodededeieioeiiriedrieiotiarioiokddrioolokdnrioiookdnor ook

aqQaaoaaan

100 SUBROUTINE QLOTPT(CPUSTAR,IET)

110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),
: UEXT(100),UDIF(100),CO0RD(100),ELEN,CONV,ELTIME ,ULBC,URBC,
: ICORR(100,2),ITYPE,NEL,NSNP

115 SUMDIF=0.

c CALCULATE PER CENT ERROR AT EACH NODE AND SUM THE ABSOLUTE VALUE
C OF ALL THE ERRORS

120 DO 150 IK=2,NSNP

130 UDIF(IK)=100. *(U(IK)-UEXT(IK))/UEXT(IK)
140 SUMDIF=SUMDIF + ABS(UDIF(IK))

150 CONTINUE

160 UDIF(1)=U(1)-UEXT(1)

c COMPUTE THE ELAPSED TIME OF THE ITERATION PROCESS

164 ELTIME=IET*. 000026

165 WRITE(6,169) ELTIME

166 WRITE(30,169)ELTIME

169 FORMAT(1X,'ELAPSED TIME FOR THE ITERATION PROCESS 1S ',F9.4,
:' SECONDS. ')

c OUTPUT DATA IN TABULAR FORMAT

170 WRITE(6,180)
175 WRITE(30,180?
180 FORMAT(/,1X, 'X-COORD',4X,'U EXACT',7X,'U FEM',4X,'% DIFF')
190 WRITE(6,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
195 WRITE(30,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
200 FORMAT(/,2X,FS. 3,4X,F9.4,3X,F10.4,4X,F5.1)

c CALCULATE CPU* FOR THE ITERATION PROCESS

205 CPUSTAR=ELTIME*SUMDIF/NSNP

210 WRITE(6,220) CPUSTAR

215 WRITE(30,220) CPUSTAR _

220 FORMAT(/,1X,'CPU* FOR THE ITERATION PROCESS IS ',F9.4,' SECONDS.')
230 RETURN

240 END

163

LIST OF REFERENCES

1. United States Air Force Project Rand Report R-438-PR, Quasilinearization and
Nonlinear Boundary-value Problems, by R. E. Bellman and R. E. Kalaba, June 1965.

164

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Department Chairman, Code ME
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, CA 93943

Naval Engineerig Cirricular Office, Code 34
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, CA 93943

Professor David Salinas, Code ME/Sa
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, CA 93943

Professor Young Kwon, Code ME/Kw
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, CA 93943

Professor Robert E. Newton, Code ME/Ne
Department of Mechanical Engineering
Naval Postgraduate School

Monterey, CA 93943

Commandant (G-PTE-2)

U.S. Coast Guard Headquarters
2100 2nd Street S.W.
Washington, D.C. 20593

LT Baird S. Ritter, USCG

U.S. Coast Guard Marine Safety Center
400 7th Street S.W.

Washington, D.C. 20590

165

No. Copies
2

